Recursion is awesome!

It’s a way of thinking that helps us solve a big problem by breaking it down into a smaller problem. The structure of the solution often matches the structure of the problem, especially for:

- math problems
- inductive data structures (i.e., built up from smaller, similarly structured pieces)

Avoiding redundant work

Algorithmic techniques that avoid redundant work:

- **Dynamic programming**: Reorder the computation so that all subproblems are solved before their results are needed.
- **Memoization**: Reuse the results of previously computed answers.

A recipe for efficient algorithms:

1) Write a straightforward, recursive algorithm.
2) Analyze the algorithm, looking for costly inefficiencies, especially redundant work.
3) If you find redundant work, re-write the algorithm to avoid that work.

Dynamic programming

A dynamic-programming algorithm is “bottom-up”: the algorithm computes the results of subproblems first. It’s typically iterative (i.e., it uses a loop) and trades space for time, by storing the results of subproblems in a table.

A dynamic-programming template

1) Write a straightforward, recursive algorithm that has redundant work.
2) Design the table:
 1) What kind of information is stored in a cell (i.e., what is a subcomputation)?
 2) How many cells will there be? (i.e., how many different recursive calls / subproblems are needed to solve the full problem?)
 3) Which cells are easy to fill in? (i.e., what are the base cases?)
 4) How does a cell’s value depend on the value of other cells? (i.e., how do the recursive cases work?)
 5) Which cell contains the answer?
3) Write the code:
 1) Create a table of the appropriate size.
 2) Write code to fill in the base-case cells.
 3) Write code (usually a loop) to fill in the remaining values.
 4) Return the value in the result cell.
Example problems

Making change

Given some coin denominations, we want to find the **fewest number of coins** that will total a given amount. For example, given the denominations 1¢, 5¢, 10¢, and 25¢, find the fewest number of coins that makes 42¢. You can assume you have an infinite number of each kind of coin.

Alternative version: compute the list of coins (rather than the number of coins) that is required to make change.

Shortest path in a directed, weighted, acyclic graph

You are given a directed, weighted, acyclic graph, where a node corresponds to a city, and an edge corresponds to a road between two cities, and a weight describes the length in minutes that it takes to traverse that road. Find the **shortest (i.e., minimum-weight) path** from a given city to another, in the graph.

Alternative version: compute the list of cities (rather than the minimum weight) that are visited on the path from one city to another. The path should include the initial and final city.

Knapsack

Given some items of various weights and a knapsack that can carry N pounds, we want to find the **maximum total weight** of items that can go in the knapsack. For example, given the items of weight 5, 10, 18, 23, 30, and 45 find the most weight you can carry in a backpack that can accommodate 42 pounds. You should assume that you have only one of each kind of item.

Alternative version: compute the list of items (rather than the maximum weight) that can fit in the knapsack.

Longest common subsequence (LCS)

Given two strings s1 and s2, find the **length of the longest string** that is a non-consecutive substring of both s1 and s2. For example, the longest common subsequence of human and chimpanzee has length 4 (hman).

Alternative version: compute the LCS itself (rather than the length of the LCS).

Edit distance

Given two strings s1 and s2, find the **minimum number of modifications** it takes to turn s1 into s2, where a modification can be one of the following:

- substitute one letter for another in one of the strings
- delete a letter from one of the strings
- insert a letter into one of the strings

For example, the edit distance of cat and hat is 1.

Alternative version: compute the list of modifications (rather than the number of modifications).

Next time: more dynamic programming