Introduction & Bits and Bytes

CS 105: Computer Systems
Lecture 01

Prof Melissa O'Neill

January 21, 2026

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

e
Course Theme:

Abstraction is good, but don’t forget reality

m Most CS courses emphasize abstraction
= Abstract data types
= Asymptotic analysis

m These abstractions have limits

= Especially in the presence of bugs
® Need to understand details of underlying implementations

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

|
Lecture 01 Learning Goals

m Understand the goals of the course

Describe a basic computer architecture and explain how its
components interact to run a process

Understand how bits are organized in computer memory
= |mportant for this course: binary and hexadecimal representations

Apply and predict the results of bit operations including &, |,
~, A, <<, >>as well as logical operators

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-
Reality Example #1

Ints are not Integers, Floats are not Reals

m Isx220? m s (x+y)+z = x + (y+2)?

Joes20en ...),306... 1,307... L 3767...-32,768...

o e
ﬁﬁ %}M% 2
LA A 2 /ﬁ‘\

- cH||

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

L =32,767... 532,766 .. .

%ﬁnm

Reality Example #2
There’s more to performance than asymptotic

complexity

void copyij (int
int
{
int i,3;
for (i = 0; i
for (j =0;
dst[i] []]

src[2048][2048],
dst[2048][2048])

2048; i++)
j < 2048; j++)
src[i] [J];

{

int i,3;

for (j = 0; j
7 for (i = 0; i

void copyji(int src[2048][2048],
int dst[2048][2048])

2048; j++)
< 2048; i++)

dst[i][3] = src[i][]]’

}

2.0 GHz Intel Core i7 Haswell

m Performance depends on access patterns

® |ncluding how you step through multi-dimensional array

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course: Useful Outcomes

m Understand how computers work

m Become more effective programmers
= Able to find and eliminate bugs efficiently

= Able to understand and tune for program performance
m Prepare for later “systems” classes in CS

= Compilers, Operating Systems, Networks, File Systems,
Computer Architecture, Robotics, etc.

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logistics Overview

m Course website
= https://www.cs.hmc.edu/cs105

= Schedule on website gives due dates, quiz/exam times, readings,
practice problems from text -

11
" Grades

Piazza for Q&A

= https://piazza.com/hmc/spring2025/hmccs105sp25
Gradescope for quiz and exam feedback
Labs: Fridays in McGregor 203-204

Participation
counts!

Quizzes: about every two weeks, closed notes
Exams: midterm and final, open notes

See course overview for more (grade break down; late days)

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Textbooks

m Randal E. Bryant and David R. O’Hallaron,

“Computer Systems: A Programmer’s Perspective”, 3" Edition,
Prentice Hall, 2015.

m Optional
= Brian Kernighan and Dennis Ritchie,

“The C Programming Language, Second Edition”, Prentice Hall,
1988

= Larry Miller and Alex Quilici
The Joy of C, Wiley, 1997

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-
Running a Process:

Hardware Organization Perspective

= Definition: A process is an instance of a running program m Suppose we have one tally mark on board for each student

= Conceptually, CPU executes logical sequence of instructions, driven by ®= How many students are there?
clock ticks (aka cycles)

Counting things and number representation

CcPU

Buses

o m How many unique ID numbers could | create with two digits in

Main

- i ion?
| Bus interface |ﬁ 1/0 Bridge “ memory decimal representation?

executable
program

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Editior m

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I
Exercise Exercise (cntd)

In the octal number system (i.e., base 8), each digit can have In the binary number system (i.e., base 2), each digit can have
one of eight values: 0-7. one of two values: 0 - 1.

1. How many unique IDs could you create using only 2 octal 3. How many unique IDs could you create using 4 binary digits?
digits? What about 6 binary digits?

What is the binary equivalent of the decimal number 53 ,,?
2. What is the octal equivalent of the decimal number 53,,?

Suppose in some number system each digit can have b
distinct values. How many unique IDs could you create with 4
digits?

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I
Everything is bits — binary digits

m Each bitis 0 or 1 (base 2)

m Bits encode everything:

® Program instructions, program data (numbers, characters, strings,
etc.), addresses in memory, etc.

m Why bits? Electronic Implementation
= Easy to store with bistable elements (hardware circuits)
= Reliably transmitted on noisy and inaccurate wires

0 { | 1
1.1V
0.9v —

0.2V 7

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hexadecimal: base 16

m Hexadecimal
= Base 16 number representation
= Use characters ‘0’ to ‘9’ and ‘A’ to ‘F

m Each digit of hex is 4 binary digits
= Write FA1D37B16 in C as
— OxFA1D37B
— Oxfald37b

et g o s o P T L S A T PN TIPS

= (H(O0|Q|I | |o|o|d|oy|u| s w|Nk o

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values

m Byte = 8 bits
= Binary 000000002 to 11111111,
® Decimal: 010 to 25510

m How many hex digits encode one byte?

5lo|o|<|a|u|e|wn|k|o

= (H(O0|Q|m | |o|o|d|oy|u| s w|Nk o

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bytes for data types and architectures

char 1

“character” set encoding
that used 1 byte to

represent characters; int 4
namely ASCII encoding

short 2

long
float
double

pointer

/

bytes in pointer influences how
many things you can point to!

Word size of system

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Words

Main memory is byte-addressable

m Any given computer has a “Word Size”

®= Nominal size of integer-valued data and of memory addresses
= Registers typically hold 64 bits o

Q
o
= The ALU accepts 64 bit inputs o

= All buses (which transport data) can transport 64 bits in parallel | | | |

= Every byte of memory has a unique memory address OxXFFesoF

0x042B3701
= Until recently, most machines used 32 bits (4 bytes) as word size

0x00eee0| |
= Limits addresses to 4GB (232 bytes)

= Programs refer to data in memory by its starting address
= |ncreasingly, machines have 64-bit word size ® Apointer is just an address in memory
= Potentially, could have 18 EB (exabytes) of addressable memory char ¢ = ‘A’ ; /* c is type char, 1 byte */
= That’s 18.4 X 1018 char * ptr = &c; /* ptr is type char *,
8 bytes on x86-64 */

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Word-Oriented Memory Organization Byte Ordering: little endian vs. big endian

64-bit oo
m Multi-byte words have address thatis ~ Words 7

address of the first byte in the word

m How are bytes within a multi-byte word ordered in memory?
m Two Conventions: little endian and big endian
m Example:

m E.g., storing 8-byte word ® Variable x has 4-byte value of 0x01234567
= Addresses of successive words differ by 8

= Address given by &x is 0x100
bytes (64-bits)

= Big Endian: Sun, PPC Mac, Internet

= Least significant byte has highest address
0x100 0x101 0x102 0x103
[[Jorf23]asfer]| | |

= Little Endian: x86, ARM processors running Android, iOS, and Windows

/' » Least significant byte has lowest address
This 0x100 0x101 0x102 0x103

course [[| 67 | 45 | 23 | o1 |

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing Strings Bits encode characters — ASCII lookup table

Hr Oct Char Dec Hx Oct Himl Chr |Dec Hy Oct Himl Chrl Dec Hyx Oct Himl Chr

000 WUL {mull) 32 20 040 €#32; Space| 54 40 100 e#6d; 0 140 s495;
001 S0E [start of heading) 33 21 041 6433 ! 55 4l 101 s#65: 51 141 £487:
002 5T [start of text) 2z D4z 434 7 52 142 b
003 ETX (end of text) 23 043 s435; 43 103 s#67; 53 143 s499;
004 EOT {end of transmission) 24 Daa «#36: — - 54 1ad £4100;
005 BN [engquiry) 25 D45 437 3 105 s#89; 55 145 s#101;
006 ACK [acknowledge) 26 D4 s#38; 46 106 s#70; 86 14§ s#10%;
007 BEL (hell) 27 047 «#39; 47 107 s471: 57 147 £4#103;
010 BS (backspace) 25 050 «#40: 48 110 s#72: 58 150 s4#104;
011 TAB (horizontal tab) 29 051 s#41; 49 111 s#73; 59 151 i
o1z (NL line feed, new line)| 42 zh 052 s#42; 4h 11z s#74; 8L 152 s#106;
013 VT (vertical tab) 2B 053 «#43; 4B 115 s475; 8B 153 +4107;
.) 014 FF (NP form feed, new page)| 44 2C 054 «#4d: 114 s#76: 5C 154 s4#106:
= Standard 7-bit encoding of character set 015 CR [carriage return) 2D 055 s#45; D 115 s#77: D 155 m
016 50 (shift out) 2E 056 sA6; - 4E 116 s#75; BE 156 s#110;

upn 017 31 ({shift in) 2F 057 «#47; 4F 117 <#79; 5F 157 s4111;

= Character “0” has code 0x30 {data link escape) 060 s#482 120 <#80: 70 160 #11Z:
(device control 1) 06l s#49; 121 «#81; 71 161 q

— Dioit | + (device contral 2) 062 s#50; 122 s#8Z; 72 162 &#lld;
Dlgltl haS COde OX30 I (device control 3) 063 s#51; 123 S 73 163 s

. . (device control 4] 064 s#52; 124 «#64; 74 164 #1165
— Capital English letters start at 0x41 for ‘A’ {negative acknowledge) 065 £453: 125 a#aS: 75 165 £#117;
(synchronous idle) aG6 1z6 «#G6; 76 166 v
0x00...00 {end of trans. block) 067 127 &487; 77 167 c#119;
{cancel) 070 130 5#66; 78 170 s#l20;
. . (end of medium) a71 131 «#892 79 171 &#l2l:
= String should be null-terminated [substituce) 07z 13z af50; 7 172 s#132;
(escape) a73 133 «#91; 7B 173 s#123;

H - {file separator) 074 134 5#92; } 124 7C 174 s#124;
= Final character = O, aka 0x00 (group separator) 075 135 «#93;] |125 7D 175 }:

(record separator) a7e ;> 136 «#94; 126 7E 176 «#l26; ~

Char S [6] - W CSlOS "; (unit separator) a77 : 137 «#95; _ [127 7F 177 DEL

Source: www.LookupTables.com

m StringsinC
= Represented by array of characters 0xFF..FF

o=

= First element of array is at lowest memory address

= Each character encoded in ASCII format

I A —m a e

HED OGS ® Mo LN S

=
=)

L
N XS AL AUHAGTORE RO L TG R RO TR

oo MRS SO uRe RO SRR RS HE S

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Manipulating bits and program instructions Boolean Algebra

m Developed by George Boole in 19th Century

m Bits encode instructions CPU Register file = Algebraic representation of logic
addq %rax, $rbx ® Encode “True” as 1 and “False” as 0

And Or
m A&B = 1 when both A=1 and B=1 | = A|B = 1 when either A=1 or B=1
&|o 1 | [0 1
0(0 O 0|0 1
1(0 1 111 1
Not Exclusive-Or (Xor)
= “A=1when A=0 = A7B = 1 when either A=1 or B=1, but not both
the Boolean functions of primary inputs

s . N
Can also be designed to “store” bits 1
(using cyclic networks) > 01 0(0 1

110 111 0

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bus interface

= Responds to changes on primary inputs

m Circuit Logic Gates 1
1>

= Primary outputs become (after a delay)

il
o

Exercise General Boolean Algebras (supportedin)

m Complete the truth table for ~(A & B) m Operate on Bit Vectors
= Qperations applied bitwise
01101001 01101001 01101001

& 01010101 | 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111100 10101010

m Boolean operations are commutative, associative, and
distributive
" Eg.
A&B=B&A
(A&B)&C=A&(B &C)
(A|B)&C=(A&C)| (B&C)
(A&B)|C=(A|C)&(B|C)

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing & Manipulating Sets Shift Operations
m Left Shift: x << y

m Representation = Shift bit-vector x left y positions Argument x| 01100010

= Width w bit vector represents membership in some set A * Throw away extra bits on left << 3 00010000
* Let a;denote the bit at position j in bit vector = Fill with 0’s on right
= a;=1if the element represented by position j € the set A

m Right Shift: x >> y
= Shift bit-vector x right y positions Argument x| 10100010
= Throw away extra bits on right Log.>> 2 | 00101000

m Example: suppose each bit position j represents a person, w=8
= Which people like dogs?
= 01101001, 2> {0,3,5, 6} like dogs
= Which people like Pokémon?
- 01010101, > {0,2, 4, 6 } like Pokémon * Fill with O's on left
= Arithmetic shift

m Operations) N . Argument x| 01100010

= Replicate most significant bit on left
= & Intersection 01000001, {0,6} Binary Log.>> 2 | 00011000
= | Union 01111101, {0,2,3,4,56} | operators
= A Symmetric difference 00111100, {2,3,4,5}

= ~ Complement 10101010, {1,3,5,7} :l unary

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

= |ogical shift Arith. >> 2| 11101000

m Undefined Behavior Arith. >> 2| 00011000
= Shift amount < 0 or > word size

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise

Evaluate each of the expressions below. Recall that 0x is a prefix
for hex numbers. Give your answers in binary and hex.

~01000001: =

~OxFF =

011010012 | 010101012 =

(011010012 >> 2) & OXOF =

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I
Bit-Level Operations in C

m Operations &, |, ~, ™ Available in C

|"

= Apply to any “integral” data type
= long, int, short, char, unsigned

m View arguments as bit vectors

= Arguments applied bit-wise

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

|
Contrast: Logic Operations in C
m Logical Operators in C

" &&,|],!
= Ois “False”

Watch out for && vs. & (and || vs.
[)...

one of the more common oopsies
in C programming!

= Anything nonzero is “True”
= Always returns 0 or 1
= Early termination

m Examples (char data type)
= 10x41 GROXO00
= 10x00 GROX01
= 110x41 <Rk0x01

" 0x69 && 0x55 ROx01
" 0x69 || 0x55 cr0x01

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

