
1Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Introduction & Bits and Bytes

CS 105: Computer Systems
Lecture 01

Prof Melissa O'Neill

January 21, 2026

Please make a name sign!
Paper and slides at back of room

1
2Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course Theme:
Abstraction is good, but don’t forget reality

 Most CS courses emphasize abstraction
▪ Abstract data types
▪ Asymptotic analysis

 These abstractions have limits
▪ Especially in the presence of bugs
▪ Need to understand details of underlying implementations

2

3Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Lecture 01 Learning Goals
 Understand the goals of the course

 Describe a basic computer architecture and explain how its
components interact to run a process

 Understand how bits are organized in computer memory
▪ Important for this course: binary and hexadecimal representations

 Apply and predict the results of bit operations including &, |,
~, ^, <<, >> as well as logical operators

3
4Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reality Example #1
Ints are not Integers, Floats are not Reals
 Is x2 ≥ 0?  Is (x+y)+z = x + (y+z)?

4

6Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reality Example #2
There’s more to performance than asymptotic
complexity

 Performance depends on access patterns
▪ Including how you step through multi-dimensional array

void copyji(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
 int dst[2048][2048])
{
 int i,j;
 for (i = 0; i < 2048; i++)
 for (j = 0; j < 2048; j++)
 dst[i][j] = src[i][j];
}

2.0 GHz Intel Core i7 Haswell

6
8Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Course: Useful Outcomes
 Understand how computers work

 Become more effective programmers
▪ Able to find and eliminate bugs efficiently
▪ Able to understand and tune for program performance

 Prepare for later “systems” classes in CS
▪ Compilers, Operating Systems, Networks, File Systems,

Computer Architecture, Robotics, etc.

8

9Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Logistics Overview
 Course website

▪ https://www.cs.hmc.edu/cs105
▪ Schedule on website gives due dates, quiz/exam times, readings,

practice problems from text
▪ Grades

 Piazza for Q&A
▪ https://piazza.com/hmc/spring2025/hmccs105sp25

 Gradescope for quiz and exam feedback
 Labs: Fridays in McGregor 203-204
 Quizzes: about every two weeks, closed notes
 Exams: midterm and final, open notes
 See course overview for more (grade break down; late days)

Do these!!

Participation
counts!

9
10Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Textbooks
 Randal E. Bryant and David R. O’Hallaron,

“Computer Systems: A Programmer’s Perspective”, 3rd Edition,
Prentice Hall, 2015.

 Optional
▪ Brian Kernighan and Dennis Ritchie,

“The C Programming Language, Second Edition”, Prentice Hall,
1988

▪ Larry Miller and Alex Quilici
The Joy of C, Wiley, 1997

10

11Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

CPU

PC

I/O Bridge
Main

memory

Disk

Running a Process:
Hardware Organization Perspective
 Definition: A process is an instance of a running program

▪ Conceptually, CPU executes logical sequence of instructions, driven by
clock ticks (aka cycles)

Bus interface

Buses

executable
program

11
13Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting things and number representation
 Suppose we have one tally mark on board for each student

▪ How many students are there?

 How many unique ID numbers could I create with two digits in
decimal representation?

13

15Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise
In the octal number system (i.e., base 8), each digit can have
one of eight values: 0 – 7.
1. How many unique IDs could you create using only 2 octal

digits?

2. What is the octal equivalent of the decimal number 5310?

15
17Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise (cntd)
In the binary number system (i.e., base 2), each digit can have
one of two values: 0 – 1.
3. How many unique IDs could you create using 4 binary digits?

What about 6 binary digits?

4. What is the binary equivalent of the decimal number 5310?

5. Suppose in some number system each digit can have b
distinct values. How many unique IDs could you create with 4
digits?

17

19Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits – binary digits
 Each bit is 0 or 1 (base 2)
 Bits encode everything:

▪ Program instructions, program data (numbers, characters, strings,
etc.), addresses in memory, etc.

 Why bits? Electronic Implementation
▪ Easy to store with bistable elements (hardware circuits)
▪ Reliably transmitted on noisy and inaccurate wires

0.0V
0.2V

0.9V
1.1V

0 1 0

19
20Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hexadecimal: base 16
 Hexadecimal

▪ Base 16 number representation
▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Each digit of hex is 4 binary digits
▪ Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

20

21Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values
 Byte = 8 bits
▪ Binary 000000002 to 111111112

▪ Decimal: 010 to 25510

 How many hex digits encode one byte?

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

21
22Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bytes for data types and architectures

bytes in pointer influences how
many things you can point to!

Word size of system

“character” set encoding
that used 1 byte to
represent characters;
namely ASCII encoding

C Data Type x86-64

char 1

short 2

int 4

long 8

float 4

double 8

pointer 8

22

23Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Machine Words
 Any given computer has a “Word Size”
▪ Nominal size of integer-valued data and of memory addresses

▪ Registers typically hold 64 bits
▪ The ALU accepts 64 bit inputs
▪ All buses (which transport data) can transport 64 bits in parallel

▪ Until recently, most machines used 32 bits (4 bytes) as word size
▪ Limits addresses to 4GB (232 bytes)

▪ Increasingly, machines have 64-bit word size
▪ Potentially, could have 18 EB (exabytes) of addressable memory
▪ That’s 18.4 X 1018

23
24Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Main memory is byte-addressable
▪ Every byte of memory has a unique memory address

▪ Programs refer to data in memory by its starting address
▪ A pointer is just an address in memory

• • •

.

.

.

0x00•••0

0xFF•••F

or

char c = ‘A’; /* c is type char, 1 byte */
char * ptr = &c; /* ptr is type char *,
 8 bytes on x86-64 */

0x042B3701 A

24

25Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Word-Oriented Memory Organization
 Multi-byte words have address that is

address of the first byte in the word

 E.g., storing 8-byte word
▪ Addresses of successive words differ by 8

bytes (64-bits)

0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04

Bytes Addr.

0x03
0x02
0x01
0x00

64-bit
Words

Addr
=
??

Addr
=
??

0x08

0x00

25
26Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Byte Ordering: little endian vs. big endian
 How are bytes within a multi-byte word ordered in memory?
 Two Conventions: little endian and big endian
 Example:
▪ Variable x has 4-byte value of 0x01234567
▪ Address given by &x is 0x100

▪ Big Endian: Sun, PPC Mac, Internet
▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and Windows
▪ Least significant byte has lowest address

0x100 0x101 0x102 0x103

01 23 45 6701 23 45 67

0x100 0x101 0x102 0x103

67 45 23 0167 45 23 01
This
course

26

27Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

char S[6] = “CS105”;

Representing Strings

 Strings in C
▪ Represented by array of characters
▪ First element of array is at lowest memory address

▪ Each character encoded in ASCII format
▪ Standard 7-bit encoding of character set
▪ Character “0” has code 0x30

– Digit i has code 0x30+I
– Capital English letters start at 0x41 for ‘A’

▪ String should be null-terminated
▪ Final character = 0, aka 0x00

31

38

32

31

33

00

31

38

32

31

33

00

0x00
0x35
0x30
0x31
0x53
0x43

0x00…00

0xFF…FF

27
28Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits encode characters – ASCII lookup table

28

30Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Manipulating bits and program instructions

 Circuit Logic Gates
▪ Responds to changes on primary inputs
▪ Primary outputs become (after a delay)

the Boolean functions of primary inputs
▪ Can also be designed to “store” bits

(using cyclic networks)

CPU

Bus interface

PC

IR

Register file
ALU

 Bits encode instructions
addq %rax, %rbx

29
31Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra
 Developed by George Boole in 19th Century
▪ Algebraic representation of logic
▪ Encode “True” as 1 and “False” as 0

And
◼ A&B = 1 when both A=1 and B=1

Or
◼ A|B = 1 when either A=1 or B=1

Not
◼ ~A = 1 when A=0

Exclusive-Or (Xor)
◼ A^B = 1 when either A=1 or B=1, but not both

30

32Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise
 Complete the truth table for ~(A & B)

~(A&B) 0 1

0

1

31
34Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras (supported in C)

 Operate on Bit Vectors
▪ Operations applied bitwise

 Boolean operations are commutative, associative, and
distributive
▪ E.g.

A & B = B & A
(A & B) & C = A & (B & C)
(A | B) & C = (A & C) | (B & C)

 (A & B) | C = (A | C) & (B | C)

01101001
& 01010101
 01000001

01101001
| 01010101
 01111101

01101001
^ 01010101
 00111100

~ 01010101
 1010101001000001 01111101 00111100 10101010

33

35Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Representing & Manipulating Sets
 Representation

▪ Width w bit vector represents membership in some set A
▪ Let aj denote the bit at position j in bit vector

▪ aj = 1 if the element represented by position j ∈ the set A

 Example: suppose each bit position j represents a person, w=8
▪ Which people like dogs?

▪ 011010012 → { 0, 3, 5, 6 } like dogs
▪ Which people like Pokémon?

▪ 010101012 → { 0, 2, 4, 6 } like Pokémon

 Operations
▪ & Intersection 010000012 { 0, 6 }
▪ | Union 011111012 { 0, 2, 3, 4, 5, 6 }
▪ ^ Symmetric difference 001111002 { 2, 3, 4, 5 }
▪ ~ Complement 101010102 { 1, 3, 5, 7 }

Binary
operators

unary
34

36Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations
 Left Shift: x << y
▪ Shift bit-vector x left y positions

▪ Throw away extra bits on left
▪ Fill with 0’s on right

 Right Shift: x >> y
▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right
▪ Logical shift

▪ Fill with 0’s on left
▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior
▪ Shift amount < 0 or ≥ word size

11101000

Arith. >> 2

10100010Argument x 00101000

Log. >> 2

10100010

1110100000101000

11101000

00101000

01100010Argument x

Log. >> 2

11101000

Arith. >> 2

00011000

11011000
00011000

00011000

01100010Argument x

<< 3 00010000

35

37Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise
Evaluate each of the expressions below. Recall that 0x is a prefix
for hex numbers. Give your answers in binary and hex.

1. ~010000012 =

2. ~0xFF =

3. 011010012 | 010101012 =

4. (011010012 >> 2) & 0x0F =

36
41Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C
 Operations &, |, ~, ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

 View arguments as bit vectors
▪ Arguments applied bit-wise

39

42Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C
 Logical Operators in C
▪ &&, ||, !

▪ 0 is “False”
▪ Anything nonzero is “True”
▪ Always returns 0 or 1
▪ Early termination

 Examples (char data type)
▪ !0x41  0x00
▪ !0x00  0x01
▪ !!0x41  0x01

▪ 0x69 && 0x55  0x01
▪ 0x69 || 0x55  0x01

Watch out for && vs. & (and || vs.
|)…
one of the more common oopsies
in C programming!

40

