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Introduction & Bits and Bytes

CS 105: Computer Systems
Lecture 01

Prof Melissa O'Neill

January 21, 2026

Please make a name sign! 
Paper and slides at back of room
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Course Theme:
Abstraction is good, but don’t forget reality

 Most CS courses emphasize abstraction
▪ Abstract data types
▪ Asymptotic analysis

 These abstractions have limits
▪ Especially in the presence of bugs
▪ Need to understand details of underlying implementations
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Lecture 01 Learning Goals
 Understand the goals of the course

 Describe a basic computer architecture and explain how its 
components interact to run a process

 Understand how bits are organized in computer memory 
▪ Important for this course: binary and hexadecimal representations

 Apply and predict the results of bit operations including &, |, 
~, ^, <<, >> as well as logical operators
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Reality Example #1
Ints are not Integers, Floats are not Reals
 Is x2 ≥ 0?  Is (x+y)+z = x + (y+z)?
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Reality Example #2
There’s more to performance than asymptotic 
complexity

 Performance depends on access patterns
▪ Including how you step through multi-dimensional array

void copyji(int src[2048][2048],
            int dst[2048][2048])
{
  int i,j;
  for (j = 0; j < 2048; j++)
    for (i = 0; i < 2048; i++)
      dst[i][j] = src[i][j];
}

void copyij(int src[2048][2048],
            int dst[2048][2048])
{
  int i,j;
  for (i = 0; i < 2048; i++)
    for (j = 0; j < 2048; j++)
      dst[i][j] = src[i][j];
}

2.0 GHz Intel Core i7 Haswell
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Course: Useful Outcomes
 Understand how computers work

 Become more effective programmers
▪ Able to find and eliminate bugs efficiently
▪ Able to understand and tune for program performance

 Prepare for later “systems” classes in CS 
▪ Compilers, Operating Systems, Networks, File Systems, 

Computer Architecture, Robotics, etc.
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Logistics Overview
 Course website

▪ https://www.cs.hmc.edu/cs105
▪ Schedule on website gives due dates, quiz/exam times, readings, 

practice problems from text
▪ Grades

 Piazza for Q&A
▪ https://piazza.com/hmc/spring2025/hmccs105sp25

 Gradescope for quiz and exam feedback
 Labs: Fridays in McGregor 203-204 
 Quizzes: about every two weeks, closed notes
 Exams: midterm and final, open notes
 See course overview for more (grade break down; late days)

Do these!!

Participation 
counts!
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Textbooks
 Randal E. Bryant and David R. O’Hallaron, 

“Computer Systems: A Programmer’s Perspective”, 3rd Edition, 
Prentice Hall, 2015.

 Optional
▪ Brian Kernighan and Dennis Ritchie, 

“The C Programming Language, Second Edition”, Prentice Hall, 
1988

▪ Larry Miller and Alex Quilici
The Joy of C, Wiley, 1997
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CPU

PC

I/O Bridge
Main 

memory

Disk

Running a Process: 
Hardware Organization Perspective
 Definition: A process is an instance of a running program

▪ Conceptually, CPU executes logical sequence of instructions, driven by 
clock ticks (aka cycles)

Bus interface

Buses

executable
program

11
13Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Counting things and number representation
 Suppose we have one tally mark on board for each student

▪ How many students are there?

 How many unique ID numbers could I create with two digits in 
decimal representation?

13

15Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise
In the octal number system (i.e., base 8), each digit can have 
one of eight values: 0 – 7.
1. How many unique IDs could you create using only 2 octal 

digits? 

2. What is the octal equivalent of the decimal number 5310?
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Exercise (cntd)
In the binary number system (i.e., base 2), each digit can have 
one of two values: 0 – 1.
3. How many unique IDs could you create using 4 binary digits? 

What about 6 binary digits?

4. What is the binary equivalent of the decimal number 5310?

5. Suppose in some number system each digit can have b 
distinct values. How many unique IDs could you create with 4 
digits?
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Everything is bits – binary digits
 Each bit is 0 or 1 (base 2)
 Bits encode everything:

▪ Program instructions, program data (numbers, characters, strings, 
etc.), addresses in memory, etc.

 Why bits?  Electronic Implementation
▪ Easy to store with bistable elements (hardware circuits)
▪ Reliably transmitted on noisy and inaccurate wires 

0.0V
0.2V

0.9V
1.1V

0 1 0
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Hexadecimal: base 16
 Hexadecimal

▪ Base 16 number representation
▪ Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Each digit of hex is 4 binary digits
▪ Write FA1D37B16 in C as

– 0xFA1D37B
– 0xfa1d37b 

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Encoding Byte Values
 Byte = 8 bits
▪ Binary 000000002 to 111111112

▪ Decimal: 010 to 25510

 How many hex digits encode one byte?

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111
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Bytes for data types and architectures

# bytes in pointer influences how 
many things you can point to! 

Word size of system

“character” set encoding 
that used 1 byte to 
represent characters; 
namely ASCII encoding

C Data Type x86-64

char 1

short 2

int 4

long 8

float 4

double 8

pointer 8
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Machine Words
 Any given computer has a “Word Size”
▪ Nominal size of integer-valued data and of memory addresses

▪ Registers typically hold 64 bits
▪ The ALU accepts 64 bit inputs  
▪ All buses (which transport data) can transport 64 bits in parallel

▪ Until recently, most machines used 32 bits (4 bytes) as word size
▪ Limits addresses to 4GB (232 bytes)

▪ Increasingly, machines have 64-bit word size
▪ Potentially, could have 18 EB (exabytes) of addressable memory
▪ That’s 18.4 X 1018
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Main memory is byte-addressable
▪ Every byte of memory has a unique memory address

▪ Programs refer to data in memory by its starting address
▪ A pointer is just an address in memory

• • •

.

.

.

0x00•••0

0xFF•••F

or

char c = ‘A’; /* c is type char, 1 byte */
char * ptr = &c; /* ptr is type char *, 
      8 bytes on x86-64 */ 

0x042B3701 A
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Word-Oriented Memory Organization
 Multi-byte words have address that is 

address of the first byte in the word

 E.g., storing 8-byte word
▪ Addresses of successive words differ by 8 

bytes (64-bits)

0x0F
0x0E
0x0D
0x0C
0x0B
0x0A
0x09
0x08
0x07
0x06
0x05
0x04

Bytes Addr.

0x03
0x02
0x01
0x00

64-bit
Words

Addr 
=
??

Addr 
=
??

0x08

0x00
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Byte Ordering: little endian vs. big endian
 How are bytes within a multi-byte word ordered in memory?
 Two Conventions: little endian and big endian
 Example: 
▪ Variable x has 4-byte value of 0x01234567
▪ Address given by &x is 0x100

▪ Big Endian: Sun, PPC Mac, Internet
▪ Least significant byte has highest address

▪ Little Endian: x86, ARM processors running Android, iOS, and Windows
▪ Least significant byte has lowest address

0x100 0x101 0x102 0x103

01 23 45 6701 23 45 67

0x100 0x101 0x102 0x103

67 45 23 0167 45 23 01
This 
course
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char S[6] = “CS105”;

Representing Strings

 Strings in C
▪ Represented by array of characters
▪ First element of array is at lowest memory address

▪ Each character encoded in ASCII format
▪ Standard 7-bit encoding of character set
▪ Character “0” has code 0x30

– Digit i  has code 0x30+I
– Capital English letters start at 0x41 for ‘A’

▪ String should be null-terminated
▪ Final character = 0, aka 0x00

31

38

32

31

33

00

31

38

32

31

33

00

0x00
0x35
0x30
0x31
0x53
0x43

0x00…00

0xFF…FF
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Bits encode characters – ASCII lookup table
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Manipulating bits and program instructions

 Circuit Logic Gates
▪ Responds to changes on primary inputs
▪ Primary outputs become (after a delay) 

the Boolean functions of primary inputs
▪ Can also be designed to “store” bits 

(using cyclic networks)

CPU

Bus interface

PC

IR

Register file
ALU

 Bits encode instructions
addq %rax, %rbx
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Boolean Algebra
 Developed by George Boole in 19th Century
▪ Algebraic representation of logic
▪ Encode “True” as 1 and “False” as 0

And
◼ A&B = 1 when both A=1 and B=1

Or
◼ A|B = 1 when either A=1 or B=1

Not
◼ ~A = 1 when A=0

Exclusive-Or (Xor)
◼ A^B = 1 when either A=1 or B=1, but not both
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Exercise
 Complete the truth table for ~(A & B)

~(A&B) 0 1

0

1
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General Boolean Algebras (supported in C)

 Operate on Bit Vectors
▪ Operations applied bitwise

 Boolean operations are commutative, associative, and 
distributive
▪ E.g.

A & B = B & A
(A & B) & C = A & (B  & C)
(A | B) & C = (A & C) | (B & C)

     (A & B) | C = (A | C) & (B | C)

01101001
& 01010101
  01000001

01101001
| 01010101
  01111101

01101001
^ 01010101
  00111100

~ 01010101
  1010101001000001 01111101 00111100 10101010
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Representing & Manipulating Sets
 Representation

▪ Width w bit vector represents membership in some set A
▪ Let aj denote the bit at position j in bit vector

▪ aj = 1 if the element represented by position j  ∈ the set A

 Example: suppose each bit position j represents a person, w=8
▪ Which people like dogs?

▪  011010012 → { 0, 3, 5, 6 } like dogs
▪ Which people like Pokémon?

▪  010101012 → { 0, 2, 4, 6 } like Pokémon

 Operations
▪ &    Intersection  010000012 { 0, 6 }
▪ |     Union   011111012 { 0, 2, 3, 4, 5, 6 }
▪ ^     Symmetric difference 001111002 { 2, 3, 4, 5 }
▪ ~     Complement  101010102 { 1, 3, 5, 7 }

Binary 
operators

unary
34
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Shift Operations
 Left Shift: x << y
▪ Shift bit-vector x left y positions

▪ Throw away extra bits on left
▪ Fill with 0’s on right

 Right Shift: x >> y
▪ Shift bit-vector x right y positions

▪ Throw away extra bits on right
▪ Logical shift

▪ Fill with 0’s on left
▪ Arithmetic shift

▪ Replicate most significant bit on left

 Undefined Behavior
▪ Shift amount < 0 or ≥ word size

11101000

Arith. >> 2

10100010Argument x 00101000

Log. >> 2

10100010

1110100000101000

11101000

00101000

01100010Argument x

Log. >> 2

11101000

Arith. >> 2

00011000

11011000
00011000

00011000

01100010Argument x

<< 3 00010000
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Exercise
Evaluate each of the expressions below. Recall that 0x is a prefix 
for hex numbers. Give your answers in binary and hex.

1. ~010000012 =

2. ~0xFF = 

3. 011010012 | 010101012 =

4. (011010012 >> 2) & 0x0F = 
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Bit-Level Operations in C
 Operations &,  |,  ~,  ^ Available in C
▪ Apply to any “integral” data type

▪ long, int, short, char, unsigned

 View arguments as bit vectors
▪ Arguments applied bit-wise
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Contrast: Logic Operations in C
 Logical Operators in C
▪ &&, ||, !

▪ 0 is “False”
▪ Anything nonzero is “True”
▪ Always returns 0 or 1
▪ Early termination

 Examples (char data type)
▪ !0x41    0x00
▪ !0x00    0x01
▪ !!0x41    0x01

▪ 0x69 && 0x55    0x01
▪ 0x69 || 0x55    0x01

Watch out for && vs. & (and || vs. 
|)… 
one of the more common oopsies 
in C programming!
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