

Integers I

CS 105: Computer Systems Lecture 02

Melissa O'Neill

January 26, 2026

9 Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

9

Nonnegative (unsigned) Integer Addition (teaser)

- Example: adding two integers, word size = 4 bits

$$\begin{array}{r} 1011 \\ + 0011 \\ \hline \end{array}$$

- Important: must constrain result to 4 bits!
 - More on the potential *overflow* later...

Lecture 02 Learning Goals

- Understand the difference between the encodings of unsigned and signed integers
- Compute the minimum and maximum values for unsigned and signed `ints` for a given # of bits (word size)
- Explain unsigned and signed (two's complement) encoding of `ints`
- Reason about the impact of casting between signed and unsigned `ints`

10 Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

10

Representing Negative Integers

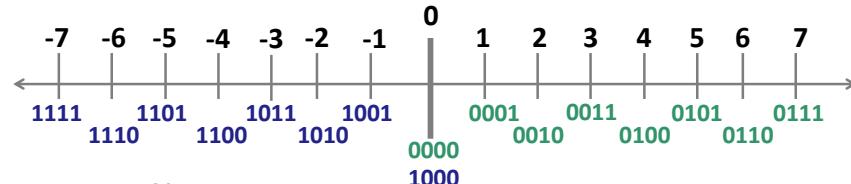
- We know with w bits, we can create 2^w distinct bit vectors
 - Encoding integers that can only be nonnegative \rightarrow yields range $0 - 2^w - 1$
 - What might be some good properties for how we encode integers using w bits that can have *both* negative and nonnegative values?

Negative Integers – Attempt

- Idea: use one bit to indicate the *sign* of the number
 - Other bits are the *magnitude* of the number
- Example: 4 bits, sign bit=1 for negative, 0 for nonnegative

6 = 0 1 1 0
-3 = 1 0 1 1

Sign bit Magnitude bits

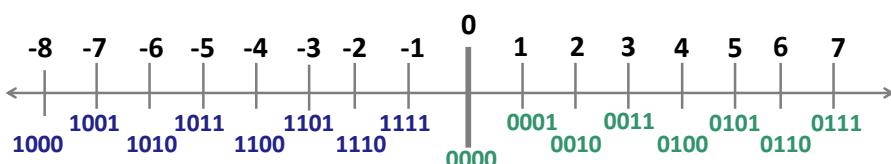

Can tell if a number is negative or not just using sign bit!

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

13

Negative Integers – Attempt (contd)

- Example: 4 bits, sign bit=1 for negative, 0 for nonnegative
 - Numeric range: -7 to 7

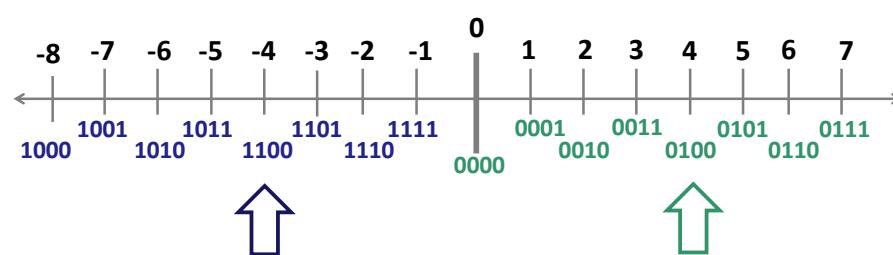

Issues?!

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

14

Two's complement encoding

- Two's complement
 - Used by systems to represent signed integers
 - Most significant bit still represents sign bit


- Idea: have bit patterns for 0 and 1, what makes sense for -1?
 - _____ + 0001 = 0000
- Etc.,
 - _____ + 0010 = 0000

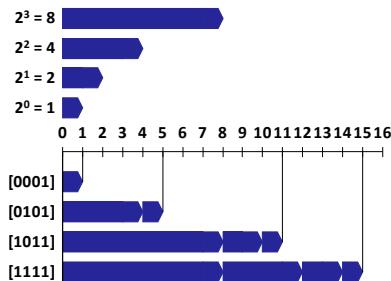
Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

17

Two's complement: negating numbers

- Subtract: Just subtraction from zero with wrap-around
 - $-x = 0 - x$
- Alternatively:

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition


18

19

Encoding Integers: Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

- Each bit contributes its own “weight” to the sum
 - E.g., with $w=4$

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

22

Exercise:

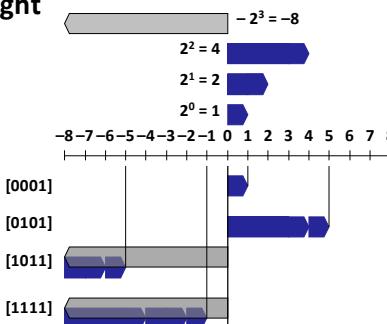
Compute the decimal value when the binary sequence is interpreted as an integer as unsigned vs. signed (using 3 bits)

Binary	Decimal value <i>unsigned</i>	Decimal value <i>signed</i>
000		
001		
010		
011		
100		
101		
110		
111		

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

24

Encoding Integers: Signed


$$B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i$$

■ Sign Bit

- For 2's complement, most significant bit indicates sign
- 0 for nonnegative, 1 for negative

■ MSB has *negative weight*

- E.g., $w=4$

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

23

Numeric Ranges for word size w

■ Unsigned Values

- $U_{Max} = 2^w - 1$
- $U_{Min} = 0$

■ Two's Complement Values

- $T_{Max} = 2^{w-1} - 1$
- $T_{Min} = -2^{w-1}$

■ Observations

- $|T_{Min}| = T_{Max} + 1$
- Asymmetric range
- $U_{Max} = 2 * T_{Max} + 1$

■ Examples for varying w

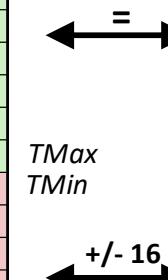
	W			
	8	16	32	64
U_{Max}	255	65,535	4,294,967,295	18,446,744,073,709,551,615
T_{Max}	127	32,767	2,147,483,647	9,223,372,036,854,775,807
T_{Min}	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

26

Exercise

- What is the two's complement encoding for the following decimal numbers? Your answer should be in binary using 8 bits.
 - 42_{10}
 - -105_{10}
- What is the decimal equivalent for the following two's complement integers? Your answer should be in decimal.
 - $1001\ 0101_2$
 - $0101\ 0010_2$
- Which of the following decimal numbers *cannot* be encoded in two's complement if the number of bits w is limited to 8?
 - 250
 - 128
 - 128

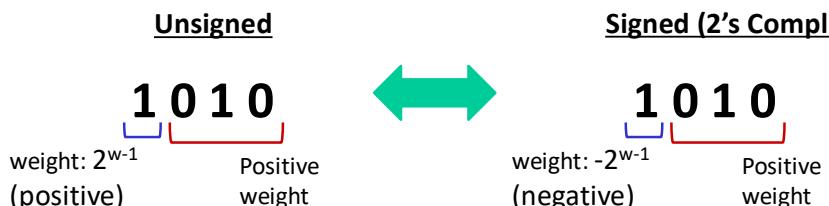

Adapted from Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

Mapping Signed \leftrightarrow Unsigned

Example:
 $w=4$ bits

X	Signed: B2T(X)
0000	0
0001	1
0010	2
0011	3
0100	4
0101	5
0110	6
0111	7
1000	-8
1001	-7
1010	-6
1011	-5
1100	-4
1101	-3
1110	-2
1111	-1

Signed: B2T(X)	Unsigned: B2U(X)
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
-8	8
-7	9
-6	10
-5	11
-4	12
-3	13
-2	14
-1	15

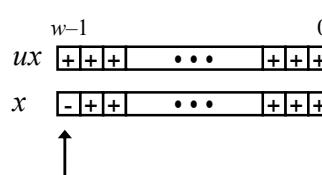
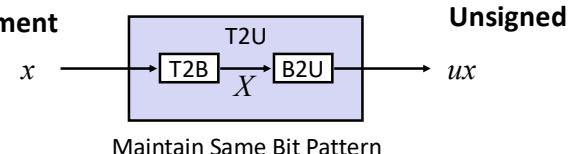

UMin

UMax

33

Relation between Signed & Unsigned (Intuition)

- Intuition: suppose $w=4$ bits, MSB is a 1

$$\text{Difference} = 2(2^{w-1}) = 2^w$$

For $w=4$, difference = 16

Relation between Signed & Unsigned

Two's Complement

Large negative weight
becomes
Large positive weight