
1Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Integers II

CS 105: Computer Systems
Lecture 03

Prof Melissa O'Neill

January 28, 2026

1
2Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Learning Goals
 Continue to reason about signed vs. unsigned ints

 Understand bit extension and truncation when casting
integral data types

 Explain the effects of addition overflow for unsigned and
signed ints

2

3Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. unsigned int types in C

/* signed, two’s complement */

char s8;
short s16;
int s32;
long s64;
long long s64;

/* unsigned */

unsigned char u8;
unsigned short u16;
unsigned /* int */ u32;
unsigned long u64;
unsigned long long u64;

Bit sizes vary, these are for
LP64. Use <stdint.h> if you
want specific sizes.

3
5Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rules: Signed vs. Unsigned in C
 Decimal-Base Constants
▪ By default are considered to be signed “big enough” integers
▪ Explicitly specify unsigned with “U” as suffix, e.g., 0U, 4294967259u

 Casting
▪ Explicit casting between signed & unsigned
▪ Implicit casting also occurs via assignments and function calls

 Expression Evaluation
▪ If there is a mix of unsigned and signed in a single expression,

signed values are implicitly cast to unsigned before evaluating
▪ Including comparison operations <, >, ==, <=, >=

int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

int tx, ty;
unsigned ux, uy;
tx = ux; /* cast as signed */
uy = ty; /* cast as unsigned */

Does not change the
underlying bit representation!

int, long, long long

4

6Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Your Notes…

5
7Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 For each pair of constants
Will the evaluation between them be signed or unsigned?
Given evaluation type, how do the constants relate to each other? <, >, or ==

 Constant1 Constant2 Evaluation Relation
 0 0u

 -1 0

 -1 0u

 2147483647 -2147483648

 2147483647u -2147483648

 -1 -2

 (unsigned) -1 -2

unsigned

Casting Surprises

==

1.

2.

3.

4.

5.

6.

7.

If there is a mix of unsigned and signed in an expression,
signed values are implicitly cast to unsigned before evaluating

6

30Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Casting between integral data types
unsigned extension

 What would you expect the value of usx to be?
How about uix?

 When going from smaller to larger unsigned data type:
 Zero extension: padding in front with zeroes
 0110 1001 ➔ 0000 0000 0110 1001
 0110 1001 ➔ 0000 0000 0000 0000 0000 0000 0110 1001

unsigned char ucx = 105; /* 1 byte */
 unsigned short usx = (unsigned short) ucx; /* 2 bytes */
 unsigned int uix = (unsigned) ucx; /* 4 bytes */

Extension: casting from smaller to larger unsigned data type

9
31Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Casting between integral data types
signed extension

 What would you expect the values of sx and ix to be?
 Does zero extension work?

 Another example... Does zero extension work?

char cx = 105; /* 1 bytes */
short sx = (short) cx; /* 2 bytes */
int ix = (int) cx; /* 4 bytes */

char cx = -1 /* 1 byte */
short sx = (short cx); /* 2 bytes */
int ix = (int) cx; /* 4 bytes */

Extension: casting from smaller to larger signed data type

10

32Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Casting between integral data types
signed extension

 When going from smaller to larger signed data type:
 Sign extension: padding in front with msb

0110 1001 ➔ 0000 0000 0000 0000 0000 0000 0110 1001
Vs.
1111 1111 ➔ 1111 1111 1111 1111 1111 1111 1111 1111

char cx = -1 /* 1 byte */
short sx = (short cx); /* 2 bytes */
int ix = (int) cx; /* 4 bytes */

Extension: casting from smaller to larger signed data type

11
33Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension for signed integers
 Task:
▪ Given w-bit signed integer x
▪ Convert it to w+k-bit integer with same value

 Rule:
▪ Make k copies of sign bit:
▪ X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB
• • •X

X  • • • • • •

• • •

w

wk
12

34Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Nonnegative
▪ Additional 0s in front do not add more weight!
▪ Example: 0111 → 0 0111

 Negative (recall)

 New negative bit’s value two times the new positive bit’s value
▪ End up with (new negative) + (new positive) = (old negative)
▪ In other words: -2w + 2w-1 = -2w-1

Sign Extension: Intuition (4 bits → 5 bits)

B2T(X) = −xw−1 2
w−1 + xi 2

i

i=0

w−2



1 1 0 0 1 1 1 0 0
Negative
weight

Positive
weight

Positive weightNegative
Now
positive

13
36Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise: An Extension Gotcha
 What will this code print…

unsigned char c = 0xFF;
unsigned int i = c << 24;
printf("Value is %x\n", i);

14

39Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Casting between integral data types
unsigned truncation

 What would you expect the value of usx or ucx to be?

 When going from larger unsigned data type to smaller use
truncation
▪ 1111 1111 1111 1111 1111 1111 1111 1111 ➔ 1111 1111 1111 1111

▪ 1111 1111 1111 1111 1111 1111 1111 1111 ➔ 1111 1111

unsigned int uix = UMAX; /* 4 bytes Umax */
 unsigned short usx = (unsigned short) uix; /* 2 bytes */
 unsigned char ucx = (unsigned char) uix /* 1 byte */

(65,53510)(4,294,967,295 10)

(4,294,967,295 10) (25510)

Truncation: casting from larger to smaller unsigned data type

17
40Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation
 Rule: to go from w bits to k bits, drop the top w-k bits
▪ Result is equivalent to zeroing out top bits (so they have no weight)

 Same rule for unsigned and signed
▪ Interpret new bit pattern as either unsigned or signed

 Impact on unsigned:
▪ Truncating integer A to k bits yields A mod 2k

0 0 0 0 … 0 0 _ _ … _ _ _ _ _ _ _ _
w-k k

18

46Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise
 Recall the rule: to go from w bits to k bits, drop the top w-k bits
1. First convert each of the signed integers into binary using 5 bits:

a) 15

b) -15

c) 0

d) 7

e) -7

19
47Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise (cntd)
2. For each of the integers in question 1, determine the decimal value when

truncated to 4 bits (again interpreting as signed integers)

a)

b)

c)

d)

e)

20

50Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation Impact: signed
 Intuition for 5 bits → 4 bits
▪ Losing the MSB could either have no impact on original value

(reverse of sign extension)

▪ Or could yield integer with value +/- 24

 Signed truncation
▪ In general, first treat bit pattern as an unsigned integer to yield

u mod 2k, then interpret result as signed

23
51Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules
 Expanding (e.g., short int to int)
▪ Unsigned: zeros added
▪ Signed: sign extension
▪ Both yield same value as original

 Truncating (e.g., unsigned to unsigned short)
▪ Unsigned/signed: bits are truncated

▪ Result reinterpreted
▪ For small numbers yields expected behavior
▪ For large magnitude unsigned performs modulo arithmetic
▪ For large magnitude signed can change value substantially — UB

24

52Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned Addition

 Standard Addition Function
▪ Ignores carry output

• • •
• • •

u
v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits UAddw(u , v)

25
55Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

 TAdd and UAdd have Identical Bit-Level Behavior
▪ Signed vs. unsigned addition in C:
 int s, t, u, v;
 s = (int) ((unsigned) u + (unsigned) v);
 t = u + v

Will give s == t

• • •
• • •

u
v+

• • •u + v

• • •

True Sum: w+1 bits

Operands: w bits

Discard Carry: w bits TAddw(u , v)

27

56Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise
 Assume you are using a 4-bit word (signed, two’s complement)

1. Add 7 and 1

2. Add -8 and -8

3. Add -5 and 3

 Which ones didn’t “work”? Is carry out information enough to detect issues?

28
60Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s-Complement Overflow (intuition)
 The true sum of two w-bit 2’s complement

numbers, u and v, may require w+1 bits
▪ Can we have an overflow if u<0 and v≥0?

 PosOver: true sum of u and v is > 2W-1 – 1

 NegOver: true sum of u and v is < 2W-1

0

2w –1-1

2w-2

-2w –1

-2w

PosOver

NegOver

E.g., for w=2
Possible sums:

True sum

TAdd

31

61Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detecting Two’s-Complement Overflow

 Detecting overflow
▪ Given:
 int s, u, v;

 s = u + v;

▪ Overflow iff either:
 u, v < 0, s  0 (Case 1: NegOver) → u + v + 2w

 u, v  0, s < 0 (Case 4: PosOver) → u + v - 2w

PosOver

NegOver

0

2w –1-1

2w-2

-2w –1

-2w

Case 4

Case 3

Case 2

Case 1

32
62Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication and Division
 Multiplication and division are slower than +/-, bit-ops
▪ Multiplication is a bit slower (e.g., 3 cycles latency, 1 cycle throughput)
▪ Division is a lot slower (e.g., 25 cycles latency, 25 cycles throughput)

 Compare with shifting for powers of 2
▪ u << k gives u * 2k

▪ both signed and unsigned
▪ u >> k gives  u / 2k 

▪ For unsigned; special consideration for signed (for negative values)

 Impact
▪ Multiplication: truncate high order bits
▪ Division: integer division should round toward zero… implications for

signed division?
33

