Integers Il

CS 105: Computer Systems
Lecture 03

Prof Melissa O'Neill

January 28, 2026

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

I
Learning Goals

m Continue to reason about signed vs. unsigned ints

Understand bit extension and truncation when casting
integral data types

Explain the effects of addition overflow for unsigned and
signed ints

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. unsigned int typesin C

/* signed, two’s complement */

char s8;

short sl6;
int s32;
long s64;
long long s64;

Bit sizes vary, these are for
LP64. Use <stdint.h>if you
want specific sizes.

/* unsigned */

unsigned char u8;
unsigned short ulé;
unsigned /* int */ u32;
unsigned long u6bd;
unsigned long long u64;

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Rules: Signed vs. Unsigned in C

| int, long, long long |

m Decimal-Base Constants
= By default are considered to be signed “big enough” integers
= Explicitly specify unsigned with “U” as suffix, e.g., 0U, 4294967259u

m Casting
= Explicit casting between signed & unsigned

<«—| Does not change the
underlying bit representation!

= Implicit casting also occurs via assignments and function calls

int tx, ty; int tx, ty:;

unsigned ux, uy; unsigned ux, uy;

tx = (int) ux; tx = ux; /* cast as signed */
uy = (unsigned) ty; uy = ty; /* cast as unsigned */

m Expression Evaluation

= If there is a mix of unsigned and signed in a single expression,
signed values are implicitly cast to unsigned before evaluating

® Including comparison operations <, >, ==, <=, >=

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If there is a mix of unsigned and signed in an expression,

Ca Sti ng su rp rises signed values are implicitly cast to unsigned before evaluating
m Examples for W=32: TMIN =-2,147,483,648, TMAX =2,147,483,647

Your Notes...

m For each pair of constants
m Will the evaluation between them be signed or unsigned?
m Given evaluation type, how do the constants relate to each other? <, >, or ==
Evaluation Relation
unsigned ==

m Constant, Constant,
0 Ou

-1 0
-1 Ou

1
2
3
4.
5
6
7

2147483647
2147483647u
-1

(unsigned) -1

-2147483648
-2147483648
-2
-2

Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

|
Casting between integral data types
unsigned extension

|
Casting between integral data types
signed extension

Extension: casting from smaller to larger unsigned data type Extension: casting from smaller to larger signed data type

/* 1 byte */ char cx 105; /* 1 bytes */
(unsigned short) ucx; /* 2 bytes */ short sx (short) cx; /* 2 bytes */
(unsigned) ucx; /* 4 bytes */ int ix = (int) cx; /* 4 bytes */

unsigned char ucx 105;
unsigned short usx
unsigned int uix

What would you expect the value of usx to be? m What would you expect the values of sx and ix to be?

How about uix? m Does zero extension work?

m Another example... Does zero extension work?
/* 1 byte */
/* 2 bytes */
/* 4 bytes */

When going from smaller to larger unsigned data type:

char cx -1
short sx (short cx);
(int) cx;

Zero extension: padding in front with zeroes
01101001 =» 0000 0000 0110 1001 Ehy3 EED
01101001 = 0000 0000 0000 0000 0000 0000 0110 1001

Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition Adapted from Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Casting between integral data types
signed extension

Extension: casting from smaller to larger signed data type
/* 1 byte */
/* 2 bytes */
/* 4 bytes */

char cx =,
short sx (short cx);

int ix (int) cx;

m When going from smaller to larger signed data type:
Sign extension: padding in front with msb

0110 1001 =» 0000 0000 0000 0000 0000 0000 0110 1001

Vs.

11111111 = 111111111111111111111111 11111111

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension for signed integers

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

= Rule:
= Make k copies of sign bit:
B X" = Xpq s Xyt » Xuet » Xz 10 Xo
—_

k copies of MSB

X' HEEEN

k

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Intuition (4 bits = 5 bits)

m Nonnegative
= Additional Os in front do not add more weight!

= Example: 0111 2> 00111

w=2 X
m Negative (recall B27(X) = —x,,-2""+ Y x2")
i=0

1100 mw) 11100
Negati\l/e_J l—P’ositive

weight weight

Positive weight

Negative T
Now

positive

m New negative bit’s value two times the new positive bit’s value
= End up with (new negative) + (new positive) = (old negative)

® |n other words: -2W + 2wW-1 = -2w-1

Exercise: An Extension Gotcha

m What will this code print...

unsigned char c = OxFF;
unsigned int i = c << 24;
printf ("Value is %x\n", i);

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

|
Casting between integral data types
unsigned truncation

Truncation: casting from larger to smaller unsigned data type
/* 4 bytes U, */
/* 2 bytes */
/* 1 byte */

unsigned int uix Upax’
unsigned short usx (unsigned short) uix;
unsigned char ucx = (unsigned char) uix

m What would you expect the value of usx or ucx to be?

m When going from larger unsigned data type to smaller use
truncation

= 111111111211111111111121211112111111 =>»1111111111111111
(4,204,967,295) (65,5354)

= 111111111111111111111111 11111111 => 11111111
(4,294,967,295 ,) (255,)

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

[
Truncation

m Rule: to go from w bits to k bits, drop the top w-k bits

= Result is equivalent to zeroing out top bits (so they have no weight)

0000..00
(

w-k

J |

m Same rule for unsigned and signed

® |nterpret new bit pattern as either unsigned or signed

m Impact on unsigned:
= Truncating integer A to k bits yields A mod 2*

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise
m Recall the rule: to go from w bits to k bits, drop the top w-k bits

1. First convert each of the signed integers into binary using 5 bits:
a) 15
b) -15
c) o
d 7

-7

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise (cntd)

2. For each of the integers in question 1, determine the decimal value when
truncated to 4 bits (again interpreting as signed integers)

a)
b)
c)
d)

e)

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation Impact: signed

m Intuition for 5 bits = 4 bits

= Losing the MSB could either have no impact on original value
(reverse of sign extension)

= Or could yield integer with value +/- 24

m Signed truncation

= |n general, first treat bit pattern as an unsigned integer to yield
u mod 2K, then interpret result as signed

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield same value as original

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= For small numbers yields expected behavior
® For large magnitude unsigned performs modulo arithmetic
= For large magnitude signed can change value substantially — UB

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

-]
Unsigned Addition

u [ITT1
+v [I11
u+rvlITT1

UAdd, (u,v) [T 11

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

m Standard Addition Function

" |gnores carry output

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s Complement Addition

+ v LLI1
u+v LT 11

TAdd, (v, v) 111

Operands: w bits u

True Sum: w+1 bits

Discard Carry: w bits

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;
s (int)
t=u+v
Will give s ==

((unsigned) u + (unsigned) v);

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exercise

m Assume you are using a 4-bit word (signed, two’s complement)
1. Add7and1l

2. Add-8and-8

3. Add-5and3

m Which ones didn’t “work”? Is carry out information enough to detect issues?

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two’s-Complement Overflow (intuition)

m The true sum of two w-bit 2’s complement
numbers, u and v, may require w+1 bits
® Can we have an overflow if u<0 and v=0?

True sum

2W_2 TProsover

TAdd
2w-=1_1 1

m PosOver: true sum of u and vis > 2W-1-1

NegOver

m NegOver: true sum of u and v is < 2W-!

Adapted from Bryant and O Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Detecting Two’s-Complement Overflow

m Detecting overflow 2W-2 Trosover

= Given: ow-1_11

int s, u, v;

s =u + v;

0 -

NegOver

_ow

Overflow iff either:
u,v<0,s>0
u,v=0,5s<0

(Case 1: NegOver) 2> u+ v+ 2%
(Case 4: PosOver) 2 u+v-2%

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiplication and Division

m Multiplication and division are slower than +/-, bit-ops
= Multiplication is a bit slower (e.g., 3 cycles latency, 1 cycle throughput)
= Division is a lot slower (e.g., 25 cycles latency, 25 cycles throughput)

m Compare with shifting for powers of 2
" u << kgivesu * 2k
= both signed and unsigned
= u > kgives Lu / 2¢]

= For unsigned; special consideration for signed (for negative values)

m Impact
= Multiplication: truncate high order bits

= Division: integer division should round toward zero... implications for
signed division?

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

