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I
Learning Goals

m Continue to reason about signed vs. unsigned ints

Understand bit extension and truncation when casting
integral data types

Explain the effects of addition overflow for unsigned and
signed ints
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Signed vs. unsigned int typesin C

/* signed, two’s complement */

char s8;

short sl6;
int s32;
long s64;
long long s64;

Bit sizes vary, these are for
LP64. Use <stdint.h>if you
want specific sizes.

/* unsigned */

unsigned char u8;
unsigned short ulé;
unsigned /* int */ u32;
unsigned long u6bd;
unsigned long long u64;
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Rules: Signed vs. Unsigned in C

| int, long, long long |

m Decimal-Base Constants
= By default are considered to be signed “big enough” integers
= Explicitly specify unsigned with “U” as suffix, e.g., 0U, 4294967259u

m Casting
= Explicit casting between signed & unsigned

<«—| Does not change the
underlying bit representation!

= Implicit casting also occurs via assignments and function calls

int tx, ty; int tx, ty:;

unsigned ux, uy; unsigned ux, uy;

tx = (int) ux; tx = ux; /* cast as signed */
uy = (unsigned) ty; uy = ty; /* cast as unsigned */

m Expression Evaluation

= If there is a mix of unsigned and signed in a single expression,
signed values are implicitly cast to unsigned before evaluating

® Including comparison operations <, >, ==, <=, >=
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If there is a mix of unsigned and signed in an expression,

Ca Sti ng su rp rises signed values are implicitly cast to unsigned before evaluating
m Examples for W=32: TMIN =-2,147,483,648, TMAX =2,147,483,647

Your Notes...

m For each pair of constants
m Will the evaluation between them be signed or unsigned?
m Given evaluation type, how do the constants relate to each other? <, >, or ==
Evaluation Relation
unsigned ==

m Constant, Constant,
0 Ou

-1 0
-1 Ou

1
2
3
4.
5
6
7

2147483647
2147483647u
-1

(unsigned) -1

-2147483648
-2147483648
-2
-2
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|
Casting between integral data types
unsigned extension

|
Casting between integral data types
signed extension

Extension: casting from smaller to larger unsigned data type Extension: casting from smaller to larger signed data type

/* 1 byte */ char cx 105; /* 1 bytes */
(unsigned short) ucx; /* 2 bytes */ short sx (short) cx; /* 2 bytes */
(unsigned) ucx; /* 4 bytes */ int ix = (int) cx; /* 4 bytes */

unsigned char ucx 105;
unsigned short usx
unsigned int uix

What would you expect the value of usx to be? m What would you expect the values of sx and ix to be?

How about uix? m Does zero extension work?

m Another example... Does zero extension work?
/* 1 byte */
/* 2 bytes */
/* 4 bytes */

When going from smaller to larger unsigned data type:

char cx -1
short sx (short cx);
(int) cx;

Zero extension: padding in front with zeroes
01101001 =» 0000 0000 0110 1001 Ehy3  EED
01101001 = 0000 0000 0000 0000 0000 0000 0110 1001
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Casting between integral data types
signed extension

Extension: casting from smaller to larger signed data type
/* 1 byte */
/* 2 bytes */
/* 4 bytes */

char cx =,
short sx (short cx);

int ix (int) cx;

m When going from smaller to larger signed data type:
Sign extension: padding in front with msb

0110 1001 =» 0000 0000 0000 0000 0000 0000 0110 1001

Vs.

11111111 = 111111111111111111111111 11111111
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Sign Extension for signed integers

m Task:
= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

= Rule:
= Make k copies of sign bit:
B X" = Xpq s Xyt » Xuet » Xz 10 Xo
—_

k copies of MSB

X' HEEEN

k
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Sign Extension: Intuition (4 bits = 5 bits)

m Nonnegative
= Additional Os in front do not add more weight!

= Example: 0111 2> 00111

w=2 X
m Negative (recall B27(X) = —x,,-2""+ Y x2")
i=0

1100 mw) 11100
Negati\l/e_J l—P’ositive

weight weight

Positive weight

Negative T
Now

positive

m New negative bit’s value two times the new positive bit’s value
= End up with (new negative) + (new positive) = (old negative)

® |n other words: -2W + 2wW-1 = -2w-1

Exercise: An Extension Gotcha

m What will this code print...

unsigned char c = OxFF;
unsigned int i = c << 24;
printf ("Value is %x\n", i);

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Adapted from Bryant and O’ Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition




|
Casting between integral data types
unsigned truncation

Truncation: casting from larger to smaller unsigned data type
/* 4 bytes U, */
/* 2 bytes */
/* 1 byte */

unsigned int uix Upax’
unsigned short usx (unsigned short) uix;
unsigned char ucx = (unsigned char) uix

m What would you expect the value of usx or ucx to be?

m When going from larger unsigned data type to smaller use
truncation

= 111111111211111111111121211112111111 =>»1111111111111111
(4,204,967,295 ) (65,5354)

= 111111111111111111111111 11111111 => 11111111
(4,294,967,295 , ) (255,)
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[
Truncation

m Rule: to go from w bits to k bits, drop the top w-k bits

= Result is equivalent to zeroing out top bits (so they have no weight)

0000..00
(

w-k

J |

m Same rule for unsigned and signed

® |nterpret new bit pattern as either unsigned or signed

m Impact on unsigned:
= Truncating integer A to k bits yields A mod 2*
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Exercise
m Recall the rule: to go from w bits to k bits, drop the top w-k bits

1. First convert each of the signed integers into binary using 5 bits:
a) 15
b) -15
c) o
d 7

-7
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Exercise (cntd)

2. For each of the integers in question 1, determine the decimal value when
truncated to 4 bits (again interpreting as signed integers)

a)
b)
c)
d)

e)
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Truncation Impact: signed

m Intuition for 5 bits = 4 bits

= Losing the MSB could either have no impact on original value
(reverse of sign extension)

= Or could yield integer with value +/- 24

m Signed truncation

= |n general, first treat bit pattern as an unsigned integer to yield
u mod 2K, then interpret result as signed
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Summary:
Expanding, Truncating: Basic Rules

m Expanding (e.g., short int to int)
= Unsigned: zeros added
= Signed: sign extension
= Both yield same value as original

m Truncating (e.g., unsigned to unsigned short)
= Unsigned/signed: bits are truncated
= Result reinterpreted
= For small numbers yields expected behavior
® For large magnitude unsigned performs modulo arithmetic
= For large magnitude signed can change value substantially — UB
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-]
Unsigned Addition

u [ITT1
+v [I11
u+rvlITT1

UAdd, (u,v) [T 11

Operands: w bits

True Sum: w+1 bits

Discard Carry: w bits

m Standard Addition Function

" |gnores carry output
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Two’s Complement Addition

+ v LLI1
u+v LT 11

TAdd, (v, v) 111

Operands: w bits u

True Sum: w+1 bits

Discard Carry: w bits

m TAdd and UAdd have Identical Bit-Level Behavior

= Signed vs. unsigned addition in C:
int s, t, u, v;
s (int)
t=u+v
Will give s ==

((unsigned) u + (unsigned) v);
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Exercise

m Assume you are using a 4-bit word (signed, two’s complement)
1. Add7and1l

2. Add-8and-8

3. Add-5and3

m Which ones didn’t “work”? Is carry out information enough to detect issues?
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Two’s-Complement Overflow (intuition)

m The true sum of two w-bit 2’s complement
numbers, u and v, may require w+1 bits
® Can we have an overflow if u<0 and v=0?

True sum

2W_2 TProsover

TAdd
2w-=1_1 1

m PosOver: true sum of u and vis > 2W-1-1

NegOver

m NegOver: true sum of u and v is < 2W-!
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Detecting Two’s-Complement Overflow

m Detecting overflow 2W-2 Trosover

= Given: ow-1_11

int s, u, v;

s =u + v;

0 -

NegOver

_ow

Overflow iff either:
u,v<0,s>0
u,v=0,5s<0

(Case 1: NegOver) 2> u+ v+ 2%
(Case 4: PosOver) 2 u+v-2%
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Multiplication and Division

m Multiplication and division are slower than +/-, bit-ops
= Multiplication is a bit slower (e.g., 3 cycles latency, 1 cycle throughput)
= Division is a lot slower (e.g., 25 cycles latency, 25 cycles throughput)

m Compare with shifting for powers of 2
" u << kgivesu * 2k
= both signed and unsigned
= u > kgives Lu / 2¢]

= For unsigned; special consideration for signed (for negative values)

m Impact
= Multiplication: truncate high order bits

= Division: integer division should round toward zero... implications for
signed division?
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