
A Global Vision System for Robotics Courses

Jacky Baltes and John Anderson
Department of Computer Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada

Email: jacky,andersj@cs.umanitoba.ca

Abstract

This paper describes our work on practical global vi-
sion systems (DORAEMON and ERGO). These vision
systems have formed the basis of several undergraduate
and graduate courses since 1998 and have consistently
been improved to perform accurately and robustly over
a wide range of applications. DORAEMON uses a so-
phisticated camera calibration method and colour model
to remove the need for an overhead view of the world.
ERGO minimized the use of colour information to pro-
vide more robust object recognition under varying light-
ing scenarios. Most recently, these video servers have
been used to control robots in a shared virtual/physical
world.

Introduction: Global Vision in an Educational
Environment

Perception is the most difficult element to present realisti-
cally when educating students in hands-on robotics. While
elements of mechanics and control can be nicely scaled
down by using simplified robotic software, limiting percep-
tion severely limits the applications that can be developed. It
is certainly possible to develop interesting robotics projects
using simple perceptual devices: a single sonar, for exam-
ple, can be used to avoid obstacles directly in front of the
robot, while a light sensor can be used to give a basic goal
for a robot, the sophistication of resulting applications will
always be limited without vision. Vision is the richest of
all human senses, but generates an enormous amount of
data, and requires sophisticated algorithms to deal with is-
sues such recognizing basic objects, let alone the sophisti-
cated processing that humans do judge distances, deal with
noise, and track objects over time. This presents two sig-
nificant challenges to those wishing to use it as a basis for
an undergraduate or high-school class dealing with robotics.
First, making use of such a large volume of information and
such sophisticated processing on inexpensive robots, and
second, ensuring that vision can be employed by students
without overwhelming them in complexity. Another set of
challenges also arises from the standpoint of managing such
an educational program, namely the setup that an ongoing
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vision system must undergo, together with ongoing mainte-
nance and the effort required to adapt it to different problem-
solving environments.

This paper presents some of our ideas on using vision in
educational robotics, together with recent work on a system
that can be used for undergraduate and high-school robotics
classes, as well as for advanced research. Our approach be-
gins by accepting that sophisticated visual processing is be-
yond the local capabilities of lower-level students using in-
expensive robots. Currently available inexpensive platforms
(e.g. Commercial PDAs) achieve only a very low frame
rate when visual processing is run locally, so many popu-
lar applications such as robotic soccer would be out of the
question, while common student lab equipment such as Lego
MindStorms are too weak to do any local visual processing.
From a student standpoint, the sophisticated algorithms for
local vision are out of the question, and frameworks for local
vision are not simple to adapt to new environments.

Like many robotic soccer leagues (e.g. the RoboCup F-
180), we advocate the simplicity of using a global vision
approach (where a single third-party view is provided to all
members of a robot team, analogous to the view of a com-
mentator in a soccer game). While most robotics leagues
take this route to remove the local processing requirements,
we find that using global vision allows us to introduce the
ideas involved in computer vision, and allows students to
see some of the issues involved in employing such systems
in the real world, while drastically lowering the information
load that would be required for local vision. The end result
is that we can have systems that employ vision, using tools
that are simple enough that students can eventually calibrate
them and modify them for new domains themselves. Stu-
dents can learn the rudiments of computer vision and benefit
from having more interesting robotic domains to work in.

Global vision shares many of the problems associated
with local vision. Objects of interest must be identified and
tracked, which requires dealing with changes in appearance
due to lighting variation and perspective. Since objects may
not be identifiable in every frame, tracking objects across
different frames is often necessary even if the objects are
not mobile. The problem of identifying objects that are jux-
taposed being as one larger object rather than several distinct
objects, and other problems related to the placement and mo-
tion of objects in the environment, are also common.



In domains such as robotic soccer, where pragmatic real-
time global vision is large part of the application, many of
the more difficult problems associated with global vision
have been dealt with through the introduction of artificial
assumptions that greatly simplify the situation. The cost of
such assumptions is that of generality: such systems can
only operate where the assumptions they rely upon can be
made. For example, global vision systems for robotic soc-
cer (e.g. (Bruce & Veloso 2003; Browning et al. 2002;
Simon, Behnke, & Rojas 2001; Ball, Wyeth, & Nuske
2004)) generally require a camera to be mounted perfectly
overhead in order to provide a simple geometric perspective
(and thus ensure that any object is the same size in the im-
age no matter where in the field of view it appears), simplify
tracking, and eliminate complex problems such as occlu-
sion between agents. If a camera cannot be placed perfectly
overhead, these systems cannot be used. Such systems also
typically recognize individuals by arrangements of coloured
patches, where the colours (for the patches and other items
such as the ball) must be pre-defined, necessitating constant
camera recalibration as lighting changes. Such systems can
thus only operate in environments where lighting remains
relatively consistent.

While such systems will always be applicable in narrow
domains where these assumptions can be made to hold, the
generality lost in continuing to adhere to these assumptions
serves to limit the applicability of these approaches to harder
problems. Moreover, these systems bear little resemblance
to human vision: children playing with remote-controlled
devices, for example, do not have to climb to the ceiling and
look down from overhead. Similarly, human vision does not
require significant restrictions lighting consistency, nor any
specialized markings on objects to be tracked. In order to
advance the state of the art in robotics and artificial intel-
ligence, we must begin to make such systems more gener-
ally intelligent. The most obvious first steps in this direction
are considering the assumptions necessary to make a global
vision system operate, and then to find ways of removing
these.

Our approach to real time computer vision arises from
a desire to remove these assumptions and produce a more
intelligent approach to global vision for teams of robots,
not only for the sake of technological advancement, but
from a pragmatic standpoint as well. For example, a sys-
tem that does not assume that a camera has a perfect over-
head mount is not only more generally useful, but requires
less set-up time in that a perfect overhead mount does not
need to be made. Similarly, an approach that can function
in a wide range of lighting conditions saves the time and
expense of providing specialized lighting for a robotic do-
main. Over the past six years, we have developed a series of
real-time global vision systems that, while designed for the
robotic soccer domain, are also generally useful anywhere
global vision can be used. These systems have been used
in RoboCup and FIRA robotic soccer competitions by our-
selves and other teams, and have also been employed in such
applications as robotic education and imitation learning. All
are open source, and can be easily obtained by the reader for
use or as a basis for further research work (Baltes & Ander-

Figure 1: A sample visual frame taken from an oblique an-
gle.

son 2006).
Each of the systems we have developed deals with some

of the assumptions normally associated with global vision
systems, and thus produces a more generally intelligent ap-
proach. This Chapter overviews the work necessary to deal
with these assumptions, and outlines challenges that remain.
We begin by examining the steps necessary to deal with a
more general camera position, how objects can be tracked
when the camera is not perfectly overhead, and how an over-
head view can be reconstructed from an oblique camera cap-
ture. This necessitates dealing with objects that are occluded
temporarily as robots move around on the field, and also re-
quires dealing with three dimensions rather than two (since
the height of an object is significant when the view is not a
perfect overhead one). We then turn to dealing with assump-
tions about the objects being tracked, in order to minimize
the need for recalibration over time, and to make global vi-
sion less vulnerable to problems of lighting variability. We
examine the possibility of tracking objects using only the ap-
pearance of the object itself, rather than specialized markers,
and discuss the use of machine learning to teach a global vi-
sion system about the objects it should be tracking. Finally,
we examine removing the assumption that specific colours
can be calibrated and tracked at all, in order to produce a vi-
sion system that does not rely on perfect colour calibration
to recognize objects.

Doraemon: Real-Time Object Tracking
without an Overhead Camera

DORAEMON (Anderson & Baltes 2002; Baltes 2002) is a
global vision system that allows objects to be tracked from
an oblique camera angle as well as from an overhead view.
The system acts as a server, taking frames from a camera,
and producing a description of the objects tracked in frames
at regular intervals, sending these over a network to clients
(agents controlling robots, for example) subscribing to this
information stream. Figure 1 is a sample visual frame used
as input to DORAEMON to illustrate the problems involved
in interpreting visual images without using a perfect over-
head viewpoint. The image is disproportionate in height be-
cause it is one raw field from the interlaced video stream
provided by the camera. It is easy to see that features are
hard to extract, in part because the shape of coloured patches
are elongated by the visual perspective, and in part because
colour is not consistent across the entire image.

In order to be able to track images from an oblique an-
gle, a calibration must be provided that allows an appropri-



Figure 2: Tsai Camera Calibration used in Doraemon

ate translation from a particular pixel in a visual frame to a
coordinate system in the real world. The calibration process
used by DORAEMON, described in detail in (Anderson &
Baltes 2002), utilizes the well-established Tsai camera cal-
ibration (Tsai 1986), which can compute a camera calibra-
tion from a single image. We have used the Tsai calibration
since 1998 with good results on mono-plane calibrations.
This method computes six external parameters (the X , Y ,
and Z coordinates of the camera position, and angles of roll,
pitch and yaw) and six internal parameters using a set of
calibration points from an image with known world coordi-
nates. This requires a set of coordinates to be imposed on
the world via a sample visual image. Since Tsai calibration
normally requires at least 15 calibration points (i.e. points
with known X ,Y coordinates), a calibration carpet with a
repetitive grid pattern is used to easily provide a significant
number of points. Even using an oblique view of the play-
ing field, the calibration results in object errors of less than
1 cm.

Objects in DORAEMON are identified by the size and ar-
rangement of coloured patches. The simplest objects may
be simply a single coloured area of a given size - e.g. a
ball might be described as an orange item 5cm in diame-
ter. More sophisticated items (e.g. individual robots) are
identified using unique arrangement of coloured patches on
the top surface, as shown in Figure 1 (e.g. a blue patch for
the front of all robots on one team, with an arrangement of
other colours uniquely identifying each team member). The
system is thus heavily dependent on accurate colour mod-
els. DORAEMON uses a sophisticated 12 parameter color
model that is based on red (R), green (G), and blue (B) chan-
nels as well as the difference channels red-green (R-G), red-
blue (R-B), and green-blue (G-B). The channel differences
are less sensitive to lighting variations than the raw chan-
nels, and allow more robust colour recognition than the raw
channels alone. While there are other models that are less
sensitive to brightness, (for example, HSI), this approach at-
tempts to balance sensitivity with computational resources.
The channel differences are similar to the hue values used in
HSI, for example, while this model is less computationally
expensive.

Each frame is colour thresholded and the recognized
patches are matched against the size and configuration in-
formation provided. Not every object will be recognized in
every frame (e.g., because of fluctuations in lighting). To
compensate for this, the locations of recognized objects in
previous frames are used both to infer likely positions in
future frames and to calculate the speed and orientation of
motion of tracked objects.

7 6188 0.000290976 ; #defined objects, frame#, time diff
1605.82 -708.394 1321.44 ; x, y, z coordinates of camera
2 spot1 Found 1232.5 416.374 0 0 0 0 ; object information
2 spot2 Found 1559.22 417.359 0 0 0 0
2 spot3 Found 1260.55 812.189 0 0 0 0
2 spot4 Found 902.726 1002.43 0 0 0 0
2 spot5 Found 746.045 735.631 0 0 0 0
1 ball1 Found 1677.99 1205.55 50 0 -2.75769 1.19908
0 car54 Found 1783.53 873.531 100 2.63944 1.47684 -6.49056

Figure 3: A sample message from Doraemon

Occlusion in robotic soccer is normally not an issue for
tracking robots, even with an oblique camera, since the
markers are on top of the robots and are thus the highest
points on the field. Occlusion certainly happens when track-
ing the ball, however, and is also possible in any tracking
scenario where obstacles on the field could be taller than
robots. There is also the possibility that robots may abut
one another, presenting a display of coloured patches that is
similar to a different robot altogether, or presented in such
a way that no one robot is easily recognizable. These situ-
ations are dealt with by tracking objects over time as well
- an object may be lost temporarily as it passes behind an
obstacle, or may be more momentarily unrecognized due to
abutting other tracked objects - because objects are intended
to be in motion, such losses will be momentary as new in-
formation allows them to be disambiguated.

DORAEMON transmits information about tracked objects
(position, orientation, velocity) in ASCII over ethernet to
any client interested in receiving it. A sample message is
shown in Figure 3.

The first line of each message contains the number of ob-
jects that video server is configured to track, followed by the
video frame number and time difference in seconds between
this message and the previous one. The next line contains
the x, y, and z coordinates of the camera, and following this
is a line for each object being tracked. Each of those lines
consists of a numeric object class (e.g. a ball, robot, etc.),
the unique defined identifier for the object, whether the ob-
ject was located in the current frame or not, the x, y, and z
coordinates of the object, the orientation of the object in ra-
dians, and the velocity of the object in mm/second in the x
and y dimensions.

Doraemon takes several steps beyond global vision sys-
tems that maintain a fixed overhead camera in terms of being
able to deal with the real world. It is quick to calibrate and
simple to recalibrate when this is necessary (e.g. due to cam-
era shift or changing lighting during use). However, there
are still significant assumptions about the domain that affect
the system’s generality. DORAEMON is heavily dependent
on good colour models, something that is not easy to main-
tain consistently over time in real-world domains without
recalibration, and relies on a fairly naive model for dealing
with occlusion. Dealing with these assumptions is the sub-
ject of the remaining sections in this Chapter.



Ergo: Removing Dependence on Predefined
Colours

The reliance on colour thresholding by both DORAEMON
and related systems places some severe restrictions on the
applicability of a global vision system. Not only are light-
ing variations a problem, but the colours themselves must
be chosen so that there is enough separation between them
to allow them to be distinguished across the entire field of
play, and the quality of the camera used is also a major issue.
In practice, even with the extra colour channels employed by
DORAEMON tracking is practically limited to around 6 dif-
ferent colours by these restrictions.

To increase the applicability of global vision to a broader
array of real-world tasks, as well as to increase the robust-
ness of the system in robotic soccer, we focussed on two
major changes in approach: the use of motion detection to
focus on areas of interest in the field, and different meth-
ods of marking objects that deemphasize the use of colour.
These and other extensions resulted in the next generation of
our global vision system, known as ERGO (Furgale, Ander-
son, & Baltes 2005).

One additional pragmatic step was also necessary in
ERGO in order to attain a comparable frame rate as that
employed in the original DORAEMON: the resolution of in-
terpolated images was decreased, in order that interpolation
did not inordinately slow down visual analysis. The result of
this introduced an additional challenge, in that a typical 5cm
soccer ball would now occupy only a 1-4 pixel range in the
reduced resolution, allowing a ball to easily be interpreted
as noise (Figure 4).

Figure 4: Captured field and corresponding low-resolution
interpolated image in Ergo. Note that the ball is easily vis-
ible in the former image, but blends with noise on the field
lines in the latter.

Rather than performing direct colour thresholding of cam-
era images, ERGO thresholds for motion across pixels in
each frame compared to a background image. An adapta-
tion of Σ∆ background estimation (Manzanera & Richefeu
2004) is used, which provides a computationally inexpen-
sive means of recursively estimating the average color and
variance of each pixel in a camera image.

Detecting motion involves setting a threshold above

Figure 5: A new approach to labeling objects for track-
ing (Furgale, Anderson, & Baltes 2005): fixed black areas
allow orientation to be recognized, while white and non-
white values in locations 1-6 represent identity

which variation across pixels will be considered to be mo-
tion. In experimenting with this, it was found that increasing
a global threshold enough that all noise would be eliminated
also had the effect of eliminating any object of the size of a
typical robotic soccer ball, since the size of such an object in
the image (¡=4 pixels) is easily interpreted as noise. To deal
with this, a means was required to consider variation more
locally and eliminate noise, while still being able to pick up
the motion of small objects, and so a combination of local
and global thresholding was employed. A threshold is set
for each pixel by examining the variance for each pixel in
the background image, then apply a convolution in order to
consider a pixel’s variance across its 9-pixel neighbourhood.
This local threshold is then scaled by a global threshold. To
detect motion, each incoming image has its sum-squared er-
ror calculated across all pixels against the background im-
age, the same convolution is applied to the result, and each
value is compared to its corresponding pre-computed thresh-
old. The use of the convolution has the effect of blending
motion in small areas to eliminate noise, while making the
movement of small objects such as the ball more obvious
by also considering small changes in neighbouring pixels.
The individual motion pixels are then merged together into
regions.

ERGOalso introduced a new pattern representation. The
two basic requirements of a representation are the determi-
nation of identity and orientation (since the remaining item
of interest, velocity, can be obtained through knowing these
over time). Previous research (Bruce & Veloso 2003) has
shown that asymmetrical patterns can be used to allow a
range of objects to be identified with fewer colours, and
these ideas were extended to develop a representation and
associated matching mechanism for tracking objects while
minimizing the need for predefined colours.

The marking approach designed for Ergo divides the
marker for a robot (or similar moving object) into a circular
series of wedges (Figure 5). Two black wedges are the same
on all robots, allowing a tracking algorithm to determine the
labeled object’s orientation. The remaining six wedges are
marked with white and non-white (i.e. any colour other than
white or black) to allow the determination of identity. Mark-
ing only two of these segments would allow up to twenty-
one individuals to be identified uniquely (the centre is left
open for a possible team identifier if desired).

An associated algorithm for identifying objects assumes
that such a marking system is in use, and begins with a set



of hypotheses of objects of interest, based on the regions of
the camera image that have been flagged as motion. The
original image is reinterpolated with a higher resolution in
(only) three concentric circular strips of pixels (each 64 pix-
els long) around the centre of each region of motion. This
allows enough high-resolution interpolated area to more ac-
curately determine the marking pattern without the compu-
tational demands of large-scale interpolation. The mean is
taken across these to reduce noise and error, resulting in a
single array of 64 elements, providing an encoding for that
region of motion that can be matched against the labeled
pattern described above. To be able to match the pattern in
this strip, two boundaries must be determined in this strip:
the boundary between black and the marker that is neither
black nor white, and the boundary between that and white.
These boundaries are determined using a histogram of in-
tensity values produced as part of the reinterpolation. The
black-other threshold can be approximated based on the fact
that any point near the centre will be 25% black. The other-
white boundary is arrived at by starting a marker at the top
of the range of the histogram, and then iteratively replacing
that with that average of the weighted sum of the histogram
counts above other-white and those below other-white.

Once these thresholds are available, the identification al-
gorithm begins by looking for the two black regions, and the
average of the centre between these is the orientation. These
wedges also provide the plane on which the pattern, and
based on that plane the recorded centre of the object is re-
fined. The remaining parts of the interpolated strip are then
partitioned relative to the black wedges and the identifica-
tion pattern can then be determined by counting the number
of white wedges and the number of wedges that are neither
white nor black.

This identification algorithm is very effective and compu-
tationally minimal, but is complicated in application by two
factors. First, the list of regions of motion may be signifi-
cantly larger than the number of objects to be tracked (due to
extraneous movement by other objects, for example): large
enough that this algorithm cannot process them all in real
time in the data directed manner that would be ideal. Sec-
ond, successful identification of an object relies on an accu-
rate centre point. If two or more moving objects appear in
close proximity to one another (or even partly occlude one
another), motion analysis will view this as one large region
of motion, with a centre that will not be helpful in identify-
ing anything. This algorithm thus needs to be applied in a
more goal-directed manner, and have some means of dealing
with clumps of objects.

ERGO deals with these problems by tracking objects
across images, which provides for a goal directed applica-
tion of this algorithm. Prior to motion analysis, every object
found in the previous frame predicts its position in the next
image based on velocity and time difference. Some objects
may thus be found very quickly, since their centre point will
be predicted and can easily be confirmed using the identifi-
cation algorithm. The area in the image occupied by object
recognized during this phase is masked during motion anal-
ysis. This masking serves two purposes: it produces no hy-
pothesis, since the object has already been dealt with, but it

Figure 6: Using Ergo under very poor lighting condi-
tions (Furgale, Anderson, & Baltes 2005)

also may serve to remove one of a group of objects that may
appear together in a moving region. Masking the area will
then leave a smaller region and a smaller number of grouped
objects (possibly only one, which can then be handled as any
other object would).

There are realistically two possibilities for the remaining
objects: a region of motion is outside the predicted area for
the object, or it is part of a clump of objects occupying a
larger region. To deal with the former, ERGO examines the
sizes of all unexplained regions of motion, and if it is a size
that could suitably match an object of interest, it is passed to
the identification algorithm. In the case of multiple objects
occupying the same space, the regions of interest will be
those that are too large for any one object. If any of these
regions were to contain more than one object, at least one
recognizable object will be touching the edge of the region,
and so the edge is where recognition efforts are focussed.

Not every object is large enough to be labeled using the
scheme shown in Figure 5, nor do all objects need an en-
coding to uniquely identify them. In robotic soccer, for ex-
ample, the ball is physically unique, and its nature does not
require a pattern for identification. The use of motion track-
ing to distinguish an element as small as the ball has already
been described. In frames where this motion tracking does
not allow the ball to be found, the ball’s location is predicted
from the previous frame, and an area eight times the ball’s
size is scanned for regions of the correct size and dimension
after colour thresholding. Colour thresholding here is sim-
ply used to distinguish regions at all given that motion de-
tection has failed, and no predefined colours are employed.

These techniques allow ERGO to perform well under very
challenging conditions. Figure 6 illustrates a screenshot
from an extreme example, with lighting positioned across
the viewing area, causing a wide disparity in brightness, and
significant shadowing. Motion tracking is shown in the up-
per right, and the system output in the bottom of the image.
All robots are identified except for one completely hidden
in shadow, and the other in complete glare from the lighting
source.

ERGO has gone a long way in making a global vision
system more applicable to real-world situations, in that it



has both removed the need for a fixed overhead camera as
well as any predefined colours, and thus can operate across
a much broader range of condition s than previous systems.
There are still assumptions it operates under, the largest be-
ing that a pattern can be used to consistently identify objects
that need to be tracked.

Conclusion
This paper has reviewed some of the issues involved in creat-
ing pragmatic global vision systems. We have discussed the
assumptions on which traditional systems are based, pointed
out how these differ with the observed abilities of human
vision, and described how these assumptions limit the ap-
plicability and generality of existing systems. We then de-
scribed techniques that allow some of these assumptions to
be discarded, and the embodiment of these techniques in our
production global vision systems, DORAEMONand ERGO.

Both DORAEMONand ERGOare used in a number of
ways. DORAEMONhas been in use every year by a number
of teams from around the world in the F-180 (small-size)
league at RoboCup. ERGOis the current global vision sys-
tem in use in our own laboratories, and is currently being
employed in a number of projects, such as imitation learn-
ing in groups of robots (Allen 2007).

If readers are interested in using the work described here
in their own future work, open-source code for DORAEMON,
ERGO, and other systems is available (Baltes & Anderson
2006).

We are currently extending our environment to a mixed
real virtual environment. A large TV mounted on the side
is used as the playing field for small robots based on remote
controlled toy tanks. The display of the TV is controlled by
a world server, that can modify parts of the environment. For
example, students are currently working on implementing a
physical Pac-Man game, where physical robots perform as
Pac-Man and ghosts and walls form the labyrinth, but pills,
power ups and fruits are created virtually. An image of the
new setup using ergo is shown below.
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