
Low-cost On-board Linux, Vision, Wi-Fi,
and more for the Roomba Robotics Base

Tod E. Kurt

ThingM Design
1126 Palm Terrace

Pasadena, CA 91104
tod@thingm.com

Abstract
The Roomba has become a rugged yet inexpensive
peripheral robotics platform. With the addition of a sub-
$100 consumer electronics wireless router, the Roomba can
cut the tether and have an on-board embedded Linux system
with built-in Wi-Fi and USB. The addition of USB allows
the use of a wide-range of additional peripherals supported
by Linux such as cameras, flash memory, and even
spectrometers.

Motivation for Autonomous Roombas
The iRobot [1] Roomba Open Interface (ROI) [2] is a
simple serial protocol that turns the robotic vacuum cleaner
into a controllable robot base with basic sensors. Others [3]
have used this interface to create robots as peripherals to
larger, stationary computer systems running decision code.
Much can be learned with this peripheral robotics
approach. A next step would be the addition of on-board
intelligence to allow local processing of high-bandwidth
sensors, reduce processing loop lag, and experiment with
the design challenges of a fully autonomous system.
Adding an embedded computer system to a Roomba at first
glance isn’t cost-effective compared to other robotic
systems, but the addition of few other consumer electronics
devices, as hackable as the Roomba, can create an
autonomous robot based on Linux with vision, audio input,
and other sensors.

The release of the ROI (originally SCI) specification not
only allowed this robust consumer robot to be hacked by
hobbyists [4] and researchers but it’s also the bellwether of
a new trend of companies enabling alternative uses of their
products. In the consumer electronics realm there are
several others following this trend (or tacitly enabling it by
not disallowing it). The most interesting devices for low-
cost robotics are certain wireless routers. These devices,
available for under $100, are capable of running an
embedded version of Linux, have integrated Wi-Fi,

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

Ethernet, USB and serial ports. Figure 1 shows the
capabilities of three different widely available routers.
These three devices have all been used as the brain for a
Roomba-based robot. Of the three tested, the best
performing is the WRTSL54GS, with the faster CPU and
USB 2.0 interface.

Figure 1 Capabilities of three different wireless routers.

Figure 2 Autonomous Linux Roomba utilizing a
WRTSL54GS, USB webcam, flash drive, and serial port.

Embedded Linux with OpenWrt
The above devices are only a few examples of “WRT”-
style routers, so named because the original hackable
router, the Linksys WRT54G. The WRT54G is based on
embedded Linux and the terms of the GPL allowed hackers
to easily inspect and modify its functionality [5]. Many
commercially available routers use the same chipset and
are amenable to similar hacking [6]. Over time a variety of
special-purpose firmware projects have been created that
run on these devices. One of the most advanced
alternatives to the stock firmware is the OpenWrt project
[7].

OpenWrt attempts to provide features similar to a modern
package-based Linux distribution. It provides a built-in
web server with CGI support, an SSH server, and most
importantly, a package management tool “ipkg”. With
ipkg, one can add new applications, tools and kernel
drivers. It can also install them without requiring a reboot
of the router.

OpenWrt is loaded onto the prospective router by using the
TFTP or HTTP firmware upgrade mechanism provided by
the manufacturer. If desired, OpenWrt can be removed
from the device and the original firmware reinstated using
the same technique.

Once OpenWrt is installed, the router can either be
configured as a wireless access point, a wireless client, or a
member of an ad-hoc network. The latter option allows a
mesh-network to be created, requiring no networking
infrastructure. This is ideal if several similarly configured
Linux Roombas would like to coordinate their movements.

Hardware Support in OpenWrt

Beyond the built-in support network devices such as the
Wi-Fi and Ethernet chipsets, OpenWrt also has in its ipkg
package repository drivers for various USB devices such as
mass storage, digital still cameras, webcams, serial ports.
Of course USB hubs are also supported meaning that
several of these devices can be connected simultaneously.
Multiples of the same device are also supported, enabling
stereo webcam vision or the connection of several USB-to-
serial adapters to control microcontroller-based sub-
systems.

For example, Figure 2 shows a $70 Roomba equipped with
a $100 WRTSL54GS running OpenWrt, a $30 webcam
providing a real-time JPEG-compressed video feed, a $20
USB-to-serial adapter to connect to the Roomba, a $20
flash drive to archive the JPEG stream, and a $10 USB hub
to tie it all together. Thus a complete semi-autonomous
telepresence robot was constructed for approximately
$250.

Software Applications in OpenWrt

Almost any standard console Linux application can be
recompiled for use in OpenWrt, assuming it can fit in the
smaller memory footprint of the router. The cross-
compilation and packaging techniques are simple and well
documented [8]. Installation of created software uses the
same ipkg mechanism as for system packages. In addition
to the system package library [9] there exists a growing
repository of third-party packages [10] created by hackers
worldwide.

Controlling the System
Because the default installation of OpenWrt contains a web
server with basic CGI execution capability, a user-friendly
mechanism to control the on-board intelligence installed is
to create a series of dynamic web pages that update
describing internal state and offering web controls to alter
behavior. In the robot of Figure 2, a page was created that
showed the real-time JPEG stream, showed telemetry data
from all sensors, and offered buttons to control Roomba
movement at both a low-level (turn right, stop) and a high-
level (go towards bright light, retrace steps).
Alternatively, lightweight custom protocol servers and
clients in either TCP or UDP can be run on the router.

References
[1] http://irobot.com/
[2] http://irobot.com/developers
[3] Dodds, Z. and Tribelhorn, B. 2006, Erdos: Cost-
effective Peripheral Robotics for AI Education, AAAI,
2006.
[4] Kurt, T., Hacking Roomba, Wiley Publishing, 2006.
[5] http://www.wi-fiplanet.com/tutorials/article.php/3562391
[6] http://wiki.openwrt.org/TableOfHardware
[7] http://openwrt.org/
[8] http://wiki.openwrt.org/BuildingPackagesHowTo
[9] http://downloads.openwrt.org/whiterussian/packages/
[10] http://www.ipkg.be/

