
How Platform-Independent is Pyro?

T. Fossum and J. Snow∗

{fossumtv,snow91}@potsdam.edu
Department of Computer Science

SUNY Potsdam
Potsdam NY

Abstract

Pyro is a Python-based software environment for robot con-
trol that is designed to minimize the necessity of program-
mers “having to worry about the low-level details of the un-
derlying hardware.” Pyro supports multiple robot platforms,
but until recently, most of them were prohibitively expensive
for departments with large interest in robotics but with low
budgets. This paper describes our experiences at adding sup-
port for lower-cost robots in the Pyro environment.

Introduction

The Pyro project has received some well-deserved attention
(and praise) in the AI education community by making it
possible to use a single language (Python) “to program many
different robots, allowing code to be shared across platforms
as well as allowing students to experiment with different
robots while learning a single language and environment.”

Until recently, the principal robots supported by Pyro
include the Pioneer family (Pioneer, Pioneer2, PeopleBot
robots), the Khepera family (Khepera, Khepera 2 and He-
misson robots), and the AIBO. The initial cost for these
robots range from about $400 for the Hemisson to about
$2000 for the Khepera and significantly more for the Pio-
neer. The AIBOs are no longer in production. For small
computer science college programs whose students want to
engage in robot-related educational activities, these costs
can be prohibitive. Adding peripheral sensors can drive the
costs even higher.

In this project, we chose two “low cost” robot platforms –
the IntelliBrain-Bot from RidgeSoft and the Roomba Red
with RooTooth from RoboDynamics. The base units for
these robots have movement and sensing capabilities that are
minimally useful for carrying out robot-related activities.

In the remainder of this paper, we outline the Pyro infras-
tructure, describe how we integrated these two robot plat-
forms into the Pyro infrastructure, and give a short summary
and critique of Pyro.

∗Supported in part by NSF grant DUE 0230030
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Pyro
Pyro is intended to be as hardware independent as possible.
For example, the Pyro command to move a robot forward at
full speed would be coded as

robot.move(1,0)

This command would result in forward-moving behavior
independent of the particular robot being controlled. (Of
course, this command would make sense only if the robot in
question had the capability of forward motion.)

Similarly, the Pyro command to rotate the robot counter-
clockwise at full speed would be coded as

robot.move(0,1)

Sensor values that represent distances come in units in-
cludinghardware, raw, androbot. Suppose a robot “front”
sensor is to be used to determine the distance between the
robot and an obstacle directly in front of the robot. Assume
the sensor returns an 8-bit value to the controller, and thatthe
8-bit value is proportional to the distance between the robot
and the obstacle. The hardware value is the actual 8-bit value
the controller sees, the raw value is this value converted into
centimeters (say), and the robot value is presented in “robot
units” – where one robot unit is the physical diameter of the
robot.

Light sensor values in Pyro do not have any predefined
standard for units. Consequently, light sensor values typ-
ically are reported in the same hardware units as obtained
directly by the controller from the light sensor port, possibly
converted so that larger values correspond to brighter lights.
This will generally not be a problem if a robot’s goal, for
example, is to follow a light source, since all that’s needed
is the relative intensity of the readings to find a maximum.

Consider the Hemisson robot, which has eight distance
(range) sensors arranged clockwise around the robot: one
left sensor (0), four front-facing sensors (1, 2, 3, and 4),
one right sensor (5), and two back-facing sensors (6 and 7).
The sensors are clustered by the robot software into groups:
for example, the “front” group consists of sensors 2 and 3,
the “front-left” group consists of sensors 0 and 1, and so
forth. The Hemisson robot has 15 such range sensor clusters
defined in Pyro.

The array of values returned by a sensor group can be
retrieved as in the following command:

robot.range["front"]

This returns the array of values corresponding to the two
frontmost sensors (2 and 3). The max or min of this array
can be used for control purposes. Similarly,

robot.range["front-left"]

returns the array of values of sensors 0 and 1.
The IntelliBrain, as we have configured it, has two front-

facing range sensors, a front-left sensor (0) and a front-right
sensor (1). We cluster both of these sensors into a “front”
group, and let “front-left” refer to sensor 0, for example.
The IntelliBrain robot has three such sensor clusters defined
in Pyro.

Assuming that a given robot platform knows how to report
values corresponding to sensor groups (or individual sen-
sors) such as “front” and “front-left”, algorithms for robot
behavior can be developed that are platform-independent.

One clear difference between the Hemisson and Intelli-
Brain robots is that the Hemisson has a much richer array of
sensors, including rear sensors. Consequently, any robot al-
gorithm that relies on rear sensor values will not work with
the IntelliBrain. This alone explains why Pyro cannot be
truly hardware-independent.

Robots

A robot is a Pyro abstraction that allows Pyro to commu-
nicate with different robot platforms through a (relatively)
common interface. Following the examples given above,
a robot can be expected to carry out effector actions us-
ing method calls such asmove(1,0) and retrieve sensor
values using method calls such asrange["front"] The
software for a specific robot platform that implements a Pyro
robot is also called a robotdriver. In the remainder of the
paper, we will use the term “robot” to refer to the software
driver, and the term “robot platform” to refer to the robot
controller device and associated sensors/effectors.

When a robot is requested to carry out amove(t,r) ac-
tion, the values of botht andr must lie between -1 and 1.
For the parametert, a value of -1 means “full speed” back-
ward, while a value of 1 means “full speed” forward. Sim-
ilarly, for the parameterr, a value of -1 means “full speed”
clockwise, while a value of 1 means “full speed” counter-
clockwise. The term “full speed” is not defined in the Pyro
documentation, although the intuitive operative definition
means “as fast as the hardware will allow”. Values be-
tween -1 and 1 should result in proportional behavior, so that
move(0.1,0.3) would move the robot platform slowly
forward and somewhat to the left (counter-clockwise).

Each robot must define anupdate method that reads
the robot platform’s hardware values by interrogating the
controller’s sensor ports, converts the hardware values (if
required) into appropriate data units (such as raw or robot
units) and packages these values into data structures (such
asrange) that Pyro can retrieve later.

Depending on the robot platform’s hardware characteris-
tics and serial communication speed, theupdate method
may take some time to complete. Anupdate method call

typically will send one or more messages to the robot plat-
form through the serial interface requesting that the con-
troller retrieve the specified sensor values, and will wait for
responses from the controller through the serial interfacefor
return values. Pyro does not specify any protocols to govern
the communication between Pyro and the robot platform;
any such protocols are up to the robot driver to define and
implement.

Brains
A brain is another Pyro abstraction that defines a specific
robotic behavior such as following a line, seeking out a light
source, or solving a maze.

In order to carry out a brain algorithm, communication be-
tween Pyro and a specific robot platform must have been es-
tablished by loading the appropriate robot driver (see above).

Each brain implements thestep method which is called
repeatedly – once every 1/10 second, for example, de-
pending on configuration. Thestep method interrogates
the robot sensors by implicitly calling the robot’supdate
method as described above. Thestep method then uses
the information retrieved by the robot from the robot plat-
form (such as interrogating therange values) to carry out
robotic activities (such as calling themove method with ap-
propriate parameters) as defined by the brain.

Notice that the “control loop” between the brain and the
robot is also implicit, carried out through the repeated calls
to step The rate at which these calls are made determines,
in part, the responsiveness of the robot. If the calls tostep
occur too quickly, the robot may not be able to retrieve and
package the sensor values successfully. If the calls occur too
slowly, the robot may not be able to respond quickly enough
to external events.

Pyro summary
Each robot platform must have a corresponding Pyro entity
called arobot that communicates between Pyro and the robot
platform through a serial interface. A Pyro robot must define
anupdate method that retrieves and packages data from
the robot platform sensors into Pyro data structures and that
defines appropriate methods such asmove to carry out out
robot-specific actions.

Loading a Pyro robot driver results in initializing the
robot data structures and establishing a serial communica-
tion channel between Pyro and the robot platform.

Each robotic algorithm must be defined by a Pyro entity
called abrain. A Pyro brain must define astepmethod that
is called repeatedly by the Pyro system and that, after mak-
ing an implicit call to the robot’supdate method, exam-
ines the robot sensor information and carries out appropriate
robotic activity such asmove

Loading a Pyro brain results in defining the behavior of
the robot by means of the implicitstep control loop. When
the brain isrun the step method is called repeatedly to
carry out the desired robotic behavior.

IntelliBrain-Bot
RidgeSoft, a Pleasanton CA company, produces the Intel-
liBrain controller, a robotics controller based on the At-

mel ATmega128. The IntelliBrain-Bot is a robot platform
that uses the IntelliBrain controller mounted on the Boe-Bot
chassis.

RidgeSoft displayed their IntelliBrain-Bot at the SIGCSE
2006 vendor exhibits in Houston. The first author of this
paper obtained an evaluation kit from RidgeSoft, which was
the basis for carrying out this aspect of the project.

IntelliBrain controller summary
The IntelliBrain controller has 132K RAM and 128K flash
memory. Communication between a host PC and the con-
troller is through a RS232 serial interface. The controller
has a 16x2 liquid crystal display, a buzzer, thumbwheel, and
two programmable LEDs.

The form factor of the IntelliBrain controller is about 65%
smaller than that of the Handy Board – a robotics controller
familiar to many robot enthusiasts. The computational speed
and memory capacity of the IntelliBrain is roughly an order
of magnitude greater than the Handy Board.

The IntelliBrain controller uses an on-board Java inter-
preter to execute bytecode loaded from a host computer.
The interpreter is multi-threaded and supports several pre-
compiled classes for communicating with devices such as
drive motors and sensors.

IntelliBrain-Bot Robot Chassis
The IntelliBrain-Bot combines the IntelliBrain controller
with the Boe-BotTMaluminum robot chassis. The metal plat-
form is more rugged and less prone to spontaneous self-
destruction than platforms based on Lego bricks.

The IntelliBrain-Bot includes the robot chassis, the Intel-
liBrain controller, a four AA-cell battery holder, and two
infrared photoreflector sensors. The chassis is rectangular,
about 13cm long and 9cm high (including the controller).
The IntelliBrain-Bot comes bundled with RoboJDE devel-
opment software.

The wheels on the chassis are driven by two servo motors
which can be independently controlled by the IntelliBrain.
The top forward speed of the chassis is about 8cm/sec.

We found ourselves frequently plugging and unplugging
cables into/from the DB-9 connector on the controller board.
Eventually, the connector will wear out or the traces on the
board will break from stress. We considered attaching a se-
rial pigtail to the DB-9 connector as a solution to this. The
Handy Board solution – a simple RJ-11 snap connector –
would have worked better.

RoboJDE
RoboJDE is a WindowsTM-based IDE that is specifically de-
signed by RidgeSoft for robot programming in Java. Robo-
JDE includes a Java compiler designed specificlly for robot
control, and includes special class libraries for hardwarede-
vices such as sensors and motors. The RoboJDE downloads
bytecode files to the IntelliBrain through a serial interface.
The bytecode files can either reside in RAM or in flash mem-
ory. RAM-loaded files disappear when the robot is powered
down, whereas flash memory files are persistent. The on-
board flash memory will degrade after a significant number

of downloads. When used with Pryo, controller downloads
are necessary only when adding new hardware interfaces.

IntelliBrain controller software

Since the IntelliBrain robot controller is programmable and
has a hardware configuration similar to the Hemisson robot
platform, we chose to implement its Pyro robot interface as
a special case of the Hemisson robot.

IntelliBrain controller command structure The Hemis-
son robot platform is controlled through a serial interfaceby
sending ASCII string commands through a serial interface
to the robot platform and reading ASCII string results from
the robot platform through the same serial interface.

For example, sending the command stringD,127,0 to
the Hemisson robot platform through the serial interface will
result in giving full forward power to the left motor and no
power to the right motor. (All command strings are termi-
nated by an ASCII carriage return character.) The Hemisson
platform acknowledges theD command string by sending an
ASCII response string of the formd back through the serial
interface. (All return strings are terminated by an ASCII
carriage return character.)

We chose to adopt the same command/response structure
for the IntelliBrain as the Hemisson. Our reason for this
choice was to use the Hemisson Pyro robot driver code with
as few changes as possible.

To interrogate the IntelliBrain’s two proximity sensors,
we send the stringN to the controller and receive an answer
string in the formn,x0,x1 wherex0 andx1 are the val-
ues of the front-left and front-right sensors. (The Hemisson
has eight proximity sensors, so its return string would have
eight return values instead of two.) The hardware valuesx0
andx1 we receive from the controller are in the range from
0 to 80 and are already scled to cm units. These values are
returned unaltered in therange structure.

To interrogate the two light sensors, we send the string
O to the controller and receive an answer string in the form
o,y0,y1 wherey0 andy1 are the values from the two
sensors. The hardware values retrieved from the controller
are in the range from 0 to 255, with 255 corresponding to
darkest and 0 corresponding to lightest. Since Pyro expects
darker vlaues to be less than lighter values, we subtract the
hardware values from the maximum value of 255 before
these values are returned in thelight structure.

IntelliBrain controller code We used the RoboJDE to
write the Java code to be executed on the IntelliBrain con-
troller. This amounted to writing a tiny interpreter that
would read an incoming command line from the controller
serial interface, parse the line to identify the command and
its parameters, carry out the command actions, and sending
a response string to the serial interface.

We tested our initial and subsequent versions of our In-
telliBrain controller code using a terminal emulator on a
host PC. On our Linux box, we used gnome-terminal. Since
the IntelliBrain code uses human-readable ASCII strings for
both input and output of command and respons information,
we were able quickly to test the controller interface before

attempting to make it work with Pyro.

Pyro IntelliBrain robot driver code
Since our original aim was to re-use as much of the Pyro
Hemisson code as possible, our original code for both the
IntelliBrain controller and the Pyro robot driver attempted
to match the Hemisson hardware characteristics as closely
as possible – for example, the maximum values for the mo-
tor speed parameters. As we gained experience with the In-
telliBrain controller code and the corresponding Pyro robot
driver, we simplified the IntelliBrain controller code so that
it incorporated “native” IntelliBrain controller values in-
stead of attempting to fudge Hemisson-like values, and we
made correspondingly appropriate changes to the Pyro robot
driver code. Still, the Pyro robot driver code for the Intelli-
Brain is remarkably similar to the original Hemisson code.

In all, our experiences with writing both the IntelliBrain
controller code and the Pyro robot driver code was reward-
ing and successful.

Roomba
Roomba is a robotic vacuum cleaner developed by iRobot in
Burlington, MA. More than two million Roomba vacuuming
robots have been sold worldwide.

Unlike the IntelliBrain, the Roomba is not programmable
at the controller level. However, the Roomba does provide
a serial interface to its controller. Through this serial inter-
face, commands can be sent to the controller to carry out
various actions (move, turn on/off vacuum motor) and to in-
quire about the controller state.

Roomba robot chassis
The Roomba robot chassis is housed in a rugged circular
plastic enclosure measuring 33cm in diameter and 8cm high.
The drive wheels of the chassis are independently controlled
by the Roomba, but the serial command interface does not
allow control of the motors separately. The top forward
speed of the chassis is about 50cm/sec.

The chassis also includes a vacuum motor and a “side
brush” each of which can be turned on and off under serial
command. An internal speaker can be programmed to play
musical tones using MIDI note definitions and duration.

The Roomba has a number of built-in sensors that can
be interrogated with serial commands. Two sensors are at-
tached to the drive wheels and identify whether the wheels
have “dropped” (for example, if the Roomba has been lifted
off the floor or if a wheel has fallen over a step); another drop
sensor is attached to the non-driving caster wheel. Two front
bump sensors – left and right – determine if the Roomba has
struck an obstacle during forward motion. Two “cliff” sen-
sors – left and right – are used to determine if the Roomba
has detected an falling edge such as a stair.

All of the Roomba sensors described above return binary
results. There are no built-in sensors that can determine
range or light.

As with the IntelliBrain, we found ourselves frequently
plugging and unplugging the DIN serial connector pigtail
into/from the Roomba. At one point, one of the pins on the

male DIN connector bent, requiring a careful straightening
of the pin in order to make the connector function again. A
more rugged connector scheme would improve this situa-
tion.

Roomba controller command structure
The serial interface to the Roomba allows an external device
to send commands to control the Roomba motors or to in-
terrogate the states of Roomba sensors. All commands are
byte sequences with one command opcode followed by zero
or more data bytes. The command opcodes are in the range
128 to 143.

To enable the full command repertoire of the Roomba
through the serial interface, the following bytes must be sent:

Opcode Command
128 Start the command interface
130 Enable user control of the Roomba
132 Enable unrestricted (full) control

The Roomba drive motors are controlled by the Drive
command with opcode 137, followed by four data bytes.
The first two data bytes encode a 16-bit two’s complement
number (high-byte first) that represents the velocity of the
Roomba in mm/sec, and the next two data bytes (simi-
larly encoded) represents the radius of curvature that the
Roomba should turn. A larger radius makes the Roomba
drive straighter. If the radius is positive, the Roomba turns
to the left, otherwise the Roomba turns to the right. For ex-
ample, the following five-byte command

Opcode/Data Meaning
137 Drive opcode
255 high byte of -200 in 2’s complement
56 low byte of -200 in 2’s complement
1 high byte of 500 in 2’s complement

244 low byte of 500 in 2’s complement

would drive the Roomba in reverse at a velocity of 200mm/s
with a leftward turning radius of 500mm.

Except for the Sensor command (described below), the
Roomba does not send any acknowledgement across the se-
rial interface indicating the success or failure of the com-
mand.

Sensor and other internal state information can be re-
trieved from the Roomba through the serial interface by
sending the Sensors opcode followed by one byte “packet
code” that determines what sensor values should be re-
turned. A packet code of zero will result in a byte strem
of 26 values to be sent by the Roomba across the serial in-
terface. The exact format of the return values is documented
in the Roomba Serial Command Interface Specification.

For example, the following two-byte command

Opcode/Data Meaning
142 Sensors opcode

0 Send all 26 bytes of sensor data

would result in the Roomba sending 26 bytes across the se-
rial interface.

The first of the 26 returned bytes, for example, gives the
state of the wheeldrops and bump sensors. Bits 2, 3, and 4 of

the byte correspond to wheeldrops for the right and left drive
wheels and the caser, respectively; bits 0 and 1 of the byte
correspond to the right and left bump sensors, respectively.
Each of these bits is interpreted with 1=true and 0=false.

Pyro Roomba robot driver code
Our robot driver code for the Roomba is dramatically differ-
ent from the IntelliBrain code.

First, the IntelliBrain robot driver communicates with
the controller through human-readable ASCII command se-
quences, and the controller always returns an ASCII re-
sponse sequence for every command it receives. The
Roomba robot driver communicates with the controller
through byte-oriented opcodes and fixed-size data packets,
often with data encoded in 2’s complement binary format.

Second, the IntelliBrain robot driver has full control over
both of the robot platform drive motors; calls to themove
method must transform thetranslate androtate values into
appropriate independent motor actions. Aside from scaling
issues, the Roomba robot driver need only convert thero-
tate component of amove method calls into an appropriate
radius values, and this is a simple inverse relationship.

Third, the IntelliBrain robot driver can be commanded to
retrieve range and light sensor data independently, and the
values returned are proportional to what the sensor detects.
The Roomba robot driver must retrieve all the sensor data at
once, and the values returned are all bit values (0 or 1).

Since the 26-byte sensor data packet sent from the
Roomba does not have any identifying start- or end-of-
packet markers, we discarded any junk data read from the
Roomba serial interface prior to sending the Sensor com-
mand, and then proceeded to read the next 26 bytes for fur-
ther processing.

The primary Roomba sensors used for navigation around
obstacles are the two front bump sensors. Since the values
reported by the Sensor command return only bit values, any
Pyro brain code that uses range-type values for measuring
proximity will not work interchangeably with the Roomba.

Serial communication
While not part of the required Pyro infrastructure, we were
interested in establishing wireless serial communicationbe-
tween the host PC runnig Pyro and our robot platforms.

RoombaDevTools sells a package consisting of the
Roomba Red (the lowest-end Roomba, yet still fully func-
tional) and a BlueTooth serial interface that can communi-
cate with standard Bluetooth serial dongles. This package is
available for $229.

The IntelliBrain has a standard DB-9 connector for se-
rial communication. Several commercial Bluetooth devices
are available that serve as wireless RS232 communications
channels. RidgeSoft recommends the AIRcable serial mod-
ule, with a list price of $69. With a IntelliBrain-Bot package
price of $358 for the base unit and a set of range and light
sensors, the entire package – including the Bluetooth serial
adapter, comes to $427. The Bluetooth device needs exter-
nal power, which can be drawn from the IntelliBrain-Bot’s
battery pack or from a 9V battery through a 5V voltage reg-
ulator.

We purchased a Bluetooth serial adapter (different from
the AIRcable) for use with the IntelliBrain controller. That
adapter required hardware handshaking – which was not de-
scribed in the adapter documentation – which the Intelli-
Brain controller does not provide. We added jumpers to
the appropriate pints on the serial cable header to provide
the various hardware handshaking signals, after which the
Bluetooth serial adapter worked fine.

Conclusions
So is Pyro truly platform-independent?

Our experience writing Pyro robot drivers for the two
robot platforms underscored the importance and value of im-
plementing methods of an abstract interface to achieve a cer-
tain measure of “platform independence.” Along the way, it
gave us the opportunity to understand better the underlying
hardware and how to report status information in a uniform
way.

Yet differences in hardware are inescapable, and a robot
brain that works with one robot platform may not work with
another. For example, the Hemisson has a rich array of range
sensors at the four compass points and at some points in be-
tween. The Roomba has two “range” sensors that are binary
valued and only sense obstacles it bumps into when the robot
is moving forward.

Here are several other observations we have made during
our project:

• Installation – The Linux installation instructions on the
Pyro web site (http://www.pyrorobotics.org)
are tailored to the Red Hat distributions. There are many
other popular Linux distributions, including Ubuntu and
Debian, that the installation instructions do not mention.
The installation page does not give details about how to
install from one of the download directories mentioned
at the top of the page. Moreover, once downloaded,
the README file in the downloaded distributions simply
points to online documentation.

• Versions – The distribution sites provide dozens of ver-
sions of Pyro. The following sites are listed on the instal-
lation page:

http://pyrorobotics.org/tars
http://pyrorobotics.org/download

The line prededing this list says, “If you find that you need
any files, please check here.”
The tars directory has distributions with names
of the form pyro-x.x.x.tgz, with the high-
est number beingpyro-3.6.1.tgz. In addition,
there’s pyro-latest.tgz, which (apparently) is
version 3.6.2. Normally, we would expect that
pyro-latest.tgz would be a symbolic link to the
latest version.
The download directory has distributions with the
names of the formpyrobot-x.x.x.tgz, with the
highest number beingpyrobot-4.8.2.tgz.
What is the purpose of both thetars anddownload
directories? The documentation gives no clue.

• Brains – There is no high-level documentation (such as a
README) about what the the sample brains do.

• Documentation – The documentation does not make it
clear whetherrotate(1) moves the robot clockwise or
counter-clockwise.

• AIBOs – Our initial interest in Pyro was prompted by our
efforts to experiment with robotic behavior using our two
AIBO robots. After months of searching, we could not
find any reliable source for Sony Pink Memory Sticks, so
we decided to pursue other robot platforms.

• Documentation redux – The Pyro documentaiton is best
understood by programmers who already know Pyro. Af-
ter completing the work on two robot drivers, we now
have a deeper understanding of the Pyro structure, but
better documentation and clearer examples would have
helped considerably towards being more productive and
meeting our project objectives earlier.

In conclusion, our work with Pyro was illuminating, chal-
lenging, and productive. We look forward to seeing a wider
adoption of Pyro in the robotics community, especially in
education. We hope that the results of our project – bringing
two low-cost robot platforms under the Pyro umbrella – will
help to see this happen.

