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Abstract 
Robotics competitions are an educational tool at the middle 
school, high school, and university levels.  The layout, rules, 
and reward systems of these competitions galvanize 
students to a specific solution space.  From our experiences 
competing-in and designing such competitions, open-loop, 
low feedback strategies tend to dominate the winner's circle. 
If we want competitions to emphasize solutions spaces that 
include AI-type robot control, contest designs need to favor 
closed-loop, high feedback strategies.  Game elements that 
encourage such designs are discussed.   
 

Introduction   

Robotics competitions have long been a part of the national 
American Association of Artificial Intelligence (AAAI) 
conferences. These competitions have been dominated by 
universities that can afford high-end robots or have the 
wherewithal to manufacture their own robots.  With the 
introduction of modestly priced microcontrollers paired 
with accessible mechanical building materials, robotics 
projects became a viable option for undergraduate artificial 
intelligence courses (Kumar and Meeden, 1998) , many of 
these taking their inspiration from the MIT 6.270 
competition (web.mit.edu/6.270). Building on the 
experience of early adopters and the emergence of easy-to-
use programming environments (e.g., Interactive C and 
Not Quite C) robotics competitions flourished as course 
activities and extra-curricular educational experiences. 
Some competitions are regional or national such as Beyond 
Botball (www.botball.org), the IEEE Regionals 
(www.2006ieeer5conference.com), and the Trinity Fire 
Fighting Competition (www.trincoll.edu/events/robot). 
Robotics competitions have also become educational and 
inspirational activities for middle and high school students, 
such as Botball (Miller and Stein 2000), FIRST Robotics 
(www.usfirst.org), and Best Robotics (www.bestinc.org) at 
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the national level. Many schools and university also hold 
local level activities, for example, the competition held at 
Southern Illinois University Edwardsville (SIUE; 
roboti.cs.siue.edu).  

The design of a robot competition determines the 
emphasis for participants. AAAI competitions 
(www.aaai.org) and RoboCup (www.robocup.org) have 
designs that emphasize some of the outstanding research 
issues in robotics and AI, such as human-robot interaction, 
multi-robot coordination, and navigation in unknown 
environments. Other competitions emphasize the 
educational experience by challenging students to develop 
creative solutions in one or more of the multidisciplinary 
aspects of robotics, such as the IEEE Regionals, which 
appear to focus on the development of custom mechanics 
and sensors.  

Within the specific emphasis of a competition, the 
design of the rules and the reward system of points and 
penalties determines the gameplay (Rouse 2001).  
Gameplay, a term most often used in the design of 
computer video games, defines the way a participant can 
interact with the components of a game and promotes 
strategy choices for accomplishing goals. Applied to 
robotics competitions, gameplay impacts the solution space 
that teams will explore for their robot designs.  

One of the dangers in designing competitions is crafting 
gameplay that is not balanced (Laird and van Lent 2001). 
Unbalanced gameplay results in a strategy that is dominant 
over all other strategies. From our experience in competing 
and designing, the gameplay of competitions appears to 
favor open-loop control designs, specifically control 
designs that have little or no sensor feedback. If we want 
competitions to emphasize solutions spaces that include 
AI-type control, gameplay should favor closed-loop 
control structures, specifically control designs that use 
sensor feedback to make decisions with regard to 
immediate strategy and, possibly,  higher level tactics. 

 
 
 



Competition Experience 

Competitor’s Perspective 
Recently, we have competed in two university-level 
robotics tournaments. The IEEE region 5 robotics 
competition involved a mini warehouse setup (see Figure 
1) with the robots acting as automated sorters.  Cans of 
four different colors were placed at random in rooms 1, 2, 
3, and 4 (the four lower rooms in Figure 1).  These cans 
were to be sorted and delivered to the correct room: red in 
room A, green in room B, blue in room C, and yellow in 
room D (the four rooms at the top of Figure 1).  These cans 
always started within a black circle; likewise, they were to 
be delivered into the corresponding black circle located 
within the appropriate room. 
 

Figure 1: Layout of IEEE region 5 competition. 
 

The goal of the 2006 Beyond Botball competition was to 
have competitors rid the arena of all “toxic waste” and save 
Billy and Betty Botguy (plush robot seen in Figure 2).  The 
toxic waste, represented by green and yellow foam balls, 
was to be removed from the bins and placed either in the 
middle (neutral zone), off of the table, onto the opponent’s 
side (negative points awarded to the opponent), or into the 
appropriate hopper within the neutral zone (bonus points).  
Billy and Betty could be removed in the same manner or 
could be reunited on your side for additional points. 

Our Designs. Typically, our robots include a sensor array 
consisting of sonars, infrared range finders, light sensors, 
and a color camera; we try to find a nice medium between 
complexity and simplicity while attempting to maintain a 
closed-loop strategy. 

At the IEEE competition, the robot consisted of three 
light sensors to perform simple line following as it's 
navigation technique.  In addition, two laser mice 
accurately tracked odometry.  This competition included 
complex line intersections; the mice approximated when 
intersections were reached, thus reducing dependence on 

the three light sensors.  Front sonar, in combination with a 
color camera, identified the colored cans.  This allowed the 
robot to locate the object using the sonar and, using the 
color camera, process an image to guarantee that it had 
found the correct object (identically colored obstacles were 
also on the field of play). An arm capable of five degrees 
of freedom was used to manipulate the environment; this 
added complexity to grabbing static objects.  The basic 
strategy of the robot involved line following to a room, 
detecting an object’s position with the sonar, processing an 
image from the camera, grabbing the sensed object, and 
then line following to the correct storage room for delivery. 
 

Figure 2: One half of the Beyond Botball arena. 
 

In the Beyond Botball 2006 national competition, sonar 
and infrared range finders were utilized as a means to 
safely navigate the course.  This strategy overcame 
orientation errors introduced by the four-wheeled platform 
design.  The wheels introduced significant turning errors 
similar to tank-tread platforms; this approach was simple, 
yet robust in establishing robot orientation with respect to 
the arena.  The robot relied heavily on image processing to 
find the colored foam balls, as well as to localize on the 
orange sign posts (found near the foam balls).  We, again, 
utilized the five degree-of-freedom arm, which was 
advantageous because the robot could accurately throw the 
foam balls great distances; in this case, onto our 
opponent’s side.  The design of the control architecture 
adopted a behavior-based approach (Arkin 1998).  
Behaviors included removing foam balls from either side, 
pitching them to the opponent’s side or dropping them off 
the table, removing the Botguy, dropping the Botguy off 
the table or placing him in any of three blocking positions 
in the neutral zone, placing a ball in the hopper, and 
blocking the hopper with the grabber.  The modular nature 
of the behaviors allowed us to choose the set of behaviors 
that we considered the best combination to offset the 
strategy of the particular opponent we were facing during 
any particular round. 



Competing Designs. One of the wonderful experiences of 
participating in robotics competitions is observing the 
diversity of robots and ideas that come from competitors.  
People always find interesting and different methods to 
complete the same task.  

At the IEEE contest, there were very similar designs that 
dominated the finals.  One part of these designs that 
appeared to work best was the use of many light sensors 
for line following.  These robots all had, at a minimum, 
five light sensors; some had as many as twelve.  This large 
array of sensors allowed them to handle the complex line 
intersections with little effort and, thus, navigate the lines 
very smoothly.  They also utilized large claws fixed to the 
front of their robot chassis.  This allowed them to quickly 
grab an object without any searching.  After sweeping the 
area with the large claw, they applied a simple color check, 
taking advantage of the fact that the object was now 
directly in front of them.  This design was capable of 
completing the course very quickly and efficiently without 
having to spend a lot of time sensing or thinking. 

At the Beyond Botball competition, the winning design 
was a highly engineered platform built specifically for this 
game.  It utilized three robots, each built for a specific 
duty; there was no communication between the robots.  
One robot would collect the balls from one storage bin and 
carry them to the opposing side.  Another would collect the 
balls from the other bin and attempt to score them in a 
hopper.  The third would grab the Botguy from the center 
bin and remove it.  The successful navigation of each of 
these robots relied heavily on intentionally running into 
walls to trigger touch sensors, which in turn let them know 
when to turn or grab.  The digital touch sensors were the 
only sensors on all three robots.  These robots were 
programmed to drive forward until a touch sensor was 
triggered by a wall, turn approximately 90 degrees, run 
into an adjacent wall to straighten out, and then repeat, 
fully utilizing the static environment. 

Results. In each of the competitions, similar outcomes 
resulted: open-loop design dominated the robot designs, 
and the teams that managed to develop reliable open-loop 
designs did well overall.  At the IEEE competition, the vast 
majority of the robots utilized this methodology; the 
winner was simply the one with the fastest claw and 
motors.  The Beyond Botball tournament had a similar 
flavor: the three robots of the winning team each utilized 
reliable, open-loop control designs. The division of labor 
was an effective strategy.  Making defensive moves against 
three robots while making offensive plays within the time 
constraints proved to be too difficult.  Experience has 
shown that in competitions which, for all intense and 
purpose, are assumed to have static or near-static 
environments, the successful robots involve little feedback 
and decision-making.  It seems that more AI-type control 
designs take too much time gathering and processing 
sensor data, and are, quite possibly, overkill in 
competitions such as these. 
 

Designer’s Perspective 
Each year, SIUE hosts a competition using the LEGO 
Mindstorms robots.  Seeding rounds for freshman 
engineering students and local area high schools are held 
over the course of a few days, culminating in a head-to-
head competition between the top ten qualifiers from each 
group. 

In SIUE’s Robo Pong 2003 (based on a design in Martin 
2001), robots were to get as many ping-pong balls as 
possible onto the opponent’s side of the arena; each side 
was its own inclined plane (see Figure 3).  Though much 
effort was made to emphasize the use of sensors, the clear 
winning strategy was to simply fling balls randomly over 
the incline and, because of the physical characteristics of 
the arena board, let gravity do the rest.  By the time 
qualifying robots had returned for the double-elimination 
rounds, nearly all of the entrants had modified their designs 
to utilize this strategy to its fullest potential. 
 

Figure 3: Robots fling ping-pong balls in Robo Pong. 
 

Similar tactics were demonstrated in RoboCraft 2004.  
Robots were given the task of gathering resources 
(represented by golf balls) to be delivered to various goal 
locations (see Figure 4).  Though the environment added 
more complexity than that of the previous year, a dominant 
strategy was still identified and exploited.  In the final 
round of the double-elimination tournament, the top two 
robots were nearly identical in design, taking advantage of 
an open-loop control strategy that depended on the known 
locations of game objectives. 
 



Figure 4: Two robots become entangled in RoboCraft. 

Components for Emphasizing AI Solutions  

In the aforementioned robotics competitions, many of the 
winning robots demonstrated a single dominant strategy 
that was a direct result of the rules of the contest itself.  
The nature of gameplay encourages participants to make 
use of an open-loop design as the control method for the 
robot. The importance of intelligent decision-making based 
on sensory feedback is not adequately stressed and, thus, 
concepts utilized do not extend well into higher-level 
applications where robots may need to react to unexpected 
events in a potentially dynamic environment. 

Given the specifics of a competition, teams generally 
assume a known layout of the arena, as well as the 
locations of objects and goals; consequently, they program 
actions to be taken when the robot reaches these locations 
with the assumption that no changes have occurred in the 
initial arena configuration.  In order to promote the use of 
closed-loop designs, one or many degrees of uncertainty 
must be deliberately included in the rules of the game.  
Incentive must also be offered to encourage the use of 
planning and re-planning based on interactions with the 
environment as well as with other robots.  Intelligent 
decision-making may take a significant amount of time, 
which is not currently offered by many competitions. 
 
Mapping 
The closed-world assumption appears to be the largest 
assumption that is made in regards to the physical 
environment (Murphy 2000).  The robot is programmed to 
navigate and interact with a static environment where all 
relevant information is known a priori.  A first step 
towards requiring sensory feedback is to not specify or at 
least not be as specific with the characteristics of the field 
of play.  RoboFest (www.robofest.net) has such a 
component, in that they do not give the dimensions of their 
arena boards prior to the competition.  This simple lack of 
detail forces participants to rely on sensory inputs to 
successfully traverse the course.  In the same competition, 

robots must interact with or attempt to remove a wooden 
barrier blocking off an area of interest on the game board.  
It follows that a game in which the environment itself can 
be obstructive, but also interactive, will present robots with 
interesting situations not yet seen in competition. 
 
Localization 
Even in current formulations of competitions, it is 
important for a robot to maintain a sense of where it is 
within the world.  The most common form of localization 
is known as dead reckoning.  This approach is adequate for 
these competitions; however, when the dynamics of the 
game require robots to cover much of the arena board in 
order to accomplish tasks, the unavoidable error intrinsic to 
dead reckoning quickly accumulates.  It would be 
advantageous for a robot to verify its location based  on 
observations, such as distance readings and landmark 
sightings, within the environment.  This provides the robot 
with an accurate and robust system for determining its 
spatial position and orientation while navigating the world 
to meet its objectives. 
 
Object Recognition 
Within the domain of the game, robots are given a series of 
tasks to complete.  These tasks often include the 
manipulation of objects within the world, moving them 
from one place to another.  However, these tasks rarely 
require an actual search procedure in order to find the 
desired objects; if the locations of these objects are given, 
there is no need for a search within the environment.  
Likewise, if their positions were not specified, but rather 
placed randomly throughout the field of play, then 
participants would be encouraged to utilize sensory 
capabilities to best locate and approach the objects. 
 
Navigation and Planning 
If the locations of objects are unknown, a robot will have 
difficulty relying on a fixed navigational strategy.  
Navigation involves avoiding obstacles while attempting to 
reach some destination.  Path-planning becomes crucial in 
these situations.  Even low-budget robots with limited 
computational power can perform basic path-planning 
(Mayer, et al. 2004). In the case that a robot was to interact 
with certain physical elements of the environment, 
planning would be required for object manipulation. 
 
Interactions 
While a game may include various intended obstacles that 
a robot must overcome, the most influential obstruction on 
the field of play tends to be another robot. This could be an 
opposing robot or a robot from a team’s own multi-robot 
entry.  Many competitions allow for, and sometimes 
encourage, interactions between competing robots.  
Though these interactions are likely to happen, most robots 
are not designed to react to such an encounter; often the 
result is entanglement (see Figure 4) or, if the robot is 
merely clipped, failure for both robots to perform their 



tasks because the assumptions made in programming their 
open-loop control strategies have been violated.  The 
competitions at SIUE address this by incorporating restart 
rules for robots deemed immobilized by a judge (e.g., 
RoboCraft 2004).  In Botball, robots were not permitted to 
cross onto an opponent’s side for some duration of time, 
thus reducing the risk of collisions early in the game; 
robots that violated this rule were subject to penalty.  In 
head-to-head competitions, contact between robots should 
be expected, and the structure of the game itself should 
promote the use of sensory feedback to predict an 
oncoming interaction to avoid or handle these collisions. 
 
Time 
All of the aforementioned AI topics require one key 
element—time.  Sensing the environment and making 
decisions based on this feedback is a time consuming 
process.  Our experiences in competing in various robotics 
competitions have shown that this overlooked factor 
constrained AI-type strategies the most.  In both the IEEE 
and Beyond Botball competitions, teams that attempted 
complex sensing and interactions within the environment 
often failed to complete the tasks given.  It is after 
identifying this limitation that many teams tend to adopt 
the open-loop strategy.  If the game were played out over a 
longer period of time, robots could carefully examine their 
surroundings and calculate appropriate responses. 
 

An Example 

At SIUE, a multidisciplinary robotics course is taught that 
presents students with an introduction to mobile robotics 
from an integrated systems perspective (Weinberg, et al. 
2005).  With slight modification, the final project of the 
class can be extended into the realm of a robotics 
competition.  We will depict it here as an example that 
addresses many of the AI topics discussed. 
 

Figure 5: An overhead view of the search and rescue arena. 

 The project is in the domain of urban search and rescue, 
using a 10’x10’ arena to represent an earthquake-damaged 
warehouse.  An initial layout of the arena is given, but the 
conditions inside are unknown (see Figure 5); the collapse 
has left various obstacles in the paths of the robot rescuers.  
Each team must design and build a robot that can explore 
the arena and search for victims (all wearing red uniforms).  
As the robot traverses the environment it should sense 
objects.  If an object is an obstacle, the robot must avoid it, 
often altering the robot’s navigation plan.  If an object is a 
victim, the robot must approach it as closely as possible 
(see Figure 6), again, altering its path plan.  The robot must 
also indicate that a victim has been found by making a 
signal, either auditory or visual, and marking the estimated 
location of the victim within a map of the arena.  Thus, a 
robot must also maintain its own global position and 
orientation.  While dead reckoning remains the main 
localization method for the project, colored landmarks at 
known locations and unique tone emitters offer the robot 
an opportunity to recalibrate its odometry information 
within the environment.  This information becomes 
exceedingly important when the robot must traverse up a 
20 degree incline to search a room on the second floor of 
the arena.  The entire search effort must be completed 
within a 15 minute time period. 
 

Figure 6: A robot rescuer identifies a victim. 
 
 The search and rescue project promotes robots to utilize 
closed-loop control and the AI elements of mapping, 
navigation, object recognition, planning, and localization, 
all within a reasonable amount of time.  Though the project 
is implemented on a smaller scale than the application 
domain, the techniques utilized provide an adequate 
introduction into higher-level challenges, such as the 
AAAI Robot Scavenger Hunt Challenge 
(www.aaai.org/Conferences/AAAI/2006/aaai06robots.php
#exhibition) and the Urban Search and Rescue 
Competition run by NIST 
(www.isd.mel.nist.gov/projects/USAR/). 



Conclusions 

In order to encourage teams in robotics competitions to 
explore design spaces that include close-loop and AI-type 
control structures, the gameplay of the competition must 
encourage such designs.  The arena environment and rules 
must reward robot designs that react to sensory data, alter 
strategy for immediate tasks, and, potentially, encourage 
higher level decision-making in overall strategy and tactics 
based on the opponent’s actions.  Some important elements 
of the gameplay to consider include unspecified arena 
dimensions, random placement of game objects, 
navigational and planning dynamics, and time constraints.  
The competitions designed to explore AI solutions can be a 
good intermediate step for students intending to continue 
studies in these areas and possibly competing in higher 
level competitions such as the AAAI and RoboCup 
challenges. 
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