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Abstract 
We have taught a number of robotics courses at Australian  
and German universities, both on manipulator kinematics 
and on intelligent mobile robots. In all cases has the 
inclusion of lab components with hands-on embedded 
robotics systems and/or simulation systems proven to be 
very successful. Through this, students have gained a better 
understanding and achieved a higher retention of the subject 
material and have also been better motivated during the 
course. 

Teaching Philosophy   
We have experienced the differences in university teaching 
systems, both as a student and as a lecturer in the US, 
Australia, and Germany. Courses in Germany usually are 
not accompanied by a lab component in the same term.  
They are lectures with tutorials only, while some courses 
(or the combination of some courses) offer a optional lab-
only course in the following semester. Contrary to this, 
most courses in Australia do have a concurrent lab 
component.  
Both systems have advantages and disadvantages. If labs 
are delivered in the following semester, students will have 
covered all required course material and will have a broad 
overview of the subject area. On the down side, some 
students may have already forgotten some of the material, 
or even worse, as not every course offers a lab and students 
only have to enroll in a certain number of lab courses, only 
a fraction of the students taking a particular course will 
also enroll in the corresponding lab course. So only a 
minority of students will be exposed to the practical side of 
the subject area. 
The system that combines lectures and labs in a single 
course presents a challenge for the lecturer, because he or 
she has to deliver the material at the right pace, so topics 
necessary for the labs will have been covered in time 
during the lectures. However, this system has been found 
to be very beneficial to the students, as all theoretical 
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material is being backed up with practical experience in a 
near time frame. 
Lab components for a course in Computer Engineering, or 
more specific in Robotics, usually do require some level of 
programming, both low-level and high-level. We use 
assembly and gnu C/C++ cross compilers. Low-level 
programming is done on the EyeBot embedded systems, 
while high level programming can be done either on the 
real robots (SoccerBots, driven by EyeBot controllers) or 
the simulation system, using the same application program. 
Students have typically taken a first year programming 
course on C before enrolling in either the Embedded 
Systems course or the Robotics and Automation course. 
However, we do provide optional weekly tutorial sessions 
throughout the semester for helping students to brush up on 
their programming skills. We consider the ability to 
program in Assembly and C/C++ to be a significant factor 
in a future graduate’s employability. This fact should go 
without mentioning, but unfortunately is not recognized in 
every EE department. 

Mobile Robot Systems 
We use different mobile robot systems for the courses in 
“Embedded Systems” and “Robotics and Automation”, 
reflecting their different levels. For the 2nd year course on 
Embedded Systems we use SoccerBot mobile robots, 
driven by EyeBot embedded controllers. For the final year 
course on “Robotics and Automation” we use Pioneer AT 
outdoor mobile robots driven by notebook computers. 

SoccerBot Mobile Robot and 
EyeBot Embedded Controller 
The EyeBot embedded controller, available from InroSoft, 
is based on a 400 MHz Intel X-Scale PXA255 (ARM) 
microprocessor with 16MB RAM, 4 DC motor drivers, 14 
servo ports, 2 serial ports, 2 digital camera interfaces for 
stereo imaging, 2 USB slaves, 1 USB host, Bluetooth, 
LAN (extensible for WLAN), and on-board programmable 
FGPA, allowing to conduct on-board image processing on 
the robots. The controller further has a color graphics LCD 
and touch panel for user input, i.e. a complete user 



interface that significantly facilitates program development 
and debugging when compared to other controllers. 
The controller runs the Linux operating system with our 
own RoBIOS extension, which comprises a monitor 
program, multi-tasking system, and a comprehensive 
system library with, among others, driver routines for 
various sensors and actuators. 
The SoccerBot mobile robot is also available from InroSoft 
and measures only 16cm×10cm. It has a differential drive 
system using two Faulhaber precision motors with 
encapsulated gearboxes and encapsulated encoders. These 
not only allow precision driving, but also make labs 
possible for experimenting with feedback controllers, such 
as PID control. 
Each SoccerBot is further equipped with a digital color 
camera and three Sharp infrared PSD (position sensitive 
device) sensors. This extremely rich sensor equipment in 
combination with the powerful embedded controller, both 
way above the average small mobile robot used in a lab 
environment, allows to conduct a virtually unlimited num-
ber of experiments in intelligent robotics. 
 

Figure 1: SoccerBot mobile robot and EyeBot controller 

Pioneer AT Mobile Robot 
The Pioneer AT is one of the more high-end products from 
ActivMedia. It was chosen for a final year robotics course, 
because we wanted students to work in an outdoor scenario 
that in many ways is more realistic than indoor settings. 
Also, outdoor mobile robotics is closer to current develop-
ments in the automotive industry, such as driver-assistance 
systems [Maurer, Stiller 2005]. 
To control each robot, we use a standard notebook compu-
ter running Windows XP that is linked to the Pioneer’s on-
board controller via a serial interface (RS232). We further 
use a USB GPS and a USB web cam as the main sensors 
for navigation. Unfortunately, the Pioneer ATs are not 

equipped with sonar sensor as default and upgrading is 
quite expensive, so we are running them without these 
sensors. 
The first valuable lesson the students learn when working 
with the robots is that all technical systems do have some 
problems that would never occur in a simulation or a mere 
software-based task. This may be frustrating at times, i.e. 
when the GPS again refuses to log on or the camera 
initialization fails, but it will develop their problem solving 
skills that will be invaluable when working in industry 
after graduation. 

 
 
Figure 2: Students on the cricket oval with a Pioneer AT 

Simulation Systems 
We have developed a number of simulation systems over 
the years at Universität Stuttgart, Germany, and The 
University of Western Australia. We are using these 
simulation systems at various stages in our courses on 
“Embedded Systems” and “Robotics and Automation”. 

Hardware Simulation System Retro 
Retro is a simulation system at register transfer level and 
allows the construction of complete CPUs from simple 
components [Bräunl 2000]. Students can construct a 
working CPU and execute their own machine programs on 
it. Retro greatly facilitates the understanding of the inner 
working of a CPU and thereby closes the gap between 
understanding of electronics at the transistor or gate level 
and understanding of software development. 
 



 
Figure 3: Sample CPU design in Retro 
 
Retro provides a standard library of components, such as 
adders, multipliers, combinatorial logic gates, multiplexers 
and decoders, registers (banks of flip-flops) and memory 
modules (RAM and ROM). Programs and data can be 
placed at a memory location and saved as a file. Program 
execution can be step-by-step or continuous at various 
execution speeds. 
Students have found this tool of great value. By actually 
building their own CPU (in simulation) and being able to 
run it with data, they achieve the best possible learning 
outcome. The simulation helps not only to understand the 
concept and inner working of a CPU completely, it also 
improves the understanding of any synchronous technical 
system. 

Manipulator Simulation System RoboSim 
RoboSim is only a demonstration implementation of a 6dof 
(degree of freedom) manipulator in Java that we provide as 
a standard reference to students. This simulator provides 
slide rulers to change manipulator position and orientation 
either in joint mode (forward kinematics) or coordinate 
mode (inverse kinematics). 
 

 
Figure 4: Manipulator simulation with RoboSim 
 
One of the lab assignments students have to complete in 
the Robotics course is to implement their own simulation 

system of a simple 3-link manipulator. This combines 
application of the kinematics equations with graphical user 
interface programming, so students will gain essential 
skills in both areas. 
By actually having to implement a robot software system, 
students will get a much deeper understanding of kine-
matics and control problems than by the traditional 
assignments that require the solving of kinematics equa-
tions. Having to write manipulator simulation software, or 
even better described as manipulator modeling software, 
students receive a very similar learning experience to using 
a real manipulator, but at a near zero cost. 

Mobile Robot Simulation System EyeSim 
EyeSim is a 2½ D driving simulator for multiple mobile 
robots with numerous sensors, including vision [Bräunl, 
Koestler, Waggershauser 2006]. EyeSim allows a robot 
application program to run in a “perfect world”, thus 
allowing a student to test his or her algorithm, or to run in a 
much more realistic error setting that can be used for 
testing an application program’s robustness [Koestler, 
Bräunl 2004]. 
Multiple robots can interact with multiple objects and each 
other in a common environment. Each robot can make use 
of multitasking, while each robot’s application program is 
executed in parallel to all other robots’ programs and the 
global environment update. 
Care has been taken to re-implement the real robot 
operating system RoBIOS [Bräunl 2006] for the EyeSim 
simulation system. This required to re-implement every 
single RoBIOS system function, but has the invaluable 
advantage that robot application programs can be 
transferred from the real robot to the simulator and back 
without the need to change a single line of source code. All 
sensors of a SoccerBot robot, odometry, infrared distance 
sensors and the camera image, are being recreated in the 
simulation and fed back to the robot application program. 
 

 
Figure 5: EyeSim mobile robot driving simulator 
 
EyeSim allows to specify individual error profiles. These 
include on the actuator side Gaussian errors for driving 
functions (vehicle translation and rotation commands) and 



on the sensor side Gaussian errors for the PSD distance 
sensors (position sensitive devices), various error models 
for the simulated robot camera (salt&pepper noise, 
100s&1000s noise, Gaussian noise), and specific error 
models for the wireless communication between robots 
(message corruption and message loss). 
EyeSim has become a central tool, not only for teaching, 
but also for research. Especially applications that require 
numerous repetitive experiments, such as training of neural 
networks or evolution with genetic algorithms can benefit 
from a realistic simulation system. Instead of having to 
repeat time-consuming experiments over and over with 
real robots and all the associated problems (placement 
accuracy, battery depletion, etc.), many of these experi-
ments can now be executed on the EyeSim simulator in the 
first instance, and much faster than in real time. 

AUV Simulation System SubSim 
While EyeSim required only a minimum of physics calcu-
lations, SubSim contains a full rigid body physics 
subsystem, augmented by water (buoyancy) and propeller 
equations for simulating autonomous underwater vehicles 
(AUVs) [Boeing, Bräunl 2005], [Bräunl, Boeing, Gonza-
lez, Koestler 2006]. 
SubSim started as a research project sponsored by an 
industrial partner with the intention to make the system 
available to the public domain and use it for an AUV 
competition track, alongside a competition for real AUVs 
in the Australasian region (see [Bräunl 1999] for robot 
competitions in general). The simulator could then be used 
by groups that either do not have the funding (e.g. high-
schools) for building their own AUV or traveling to 
Australia, or by groups that have not yet progressed far 
enough with their real AUV development. 
 

 
Figure 6: SubSim full physics simulator 
 
A very basic and generic, low-level user interface has been 
created as the basis for SubSim. This allows access to all 
actuators and sensors and can in turn be used to implement 
high-level interfaces such as RoBIOS. We have in fact 
implemented our SubSim-RoBIOS interface on this low-
level interface and interested parties can design their own 

operating system on this basis. AUV application programs 
can be written either using the low-level interface or the 
RoBIOS (or other, if available) high-level interface. 
Care has also been taken to make the simulation system as 
extensible as possible. Therefore, it is possible to create 
one’s own AUVs, both as a detailed structural description 
in XML, and as a graphics file for rendering purposes. It is 
further possible to add one’s own actuators and sensors, 
and finally it is possible to replace the complete physics 
engine by a different package. So far we have tested and 
written interfaces/plug-ins for Dynamechs, Novodex, 
ODE, and Newton. 

Summary 
We have presented our experience on teaching methods for 
the subject of intelligent robotics. The inclusion of labs 
with a combination of real embedded systems and simu-
lation systems has been found to be extremely valuable as 
it not only improved the students’ understanding of the 
subject material and its practical applicability, it also gave 
them significantly higher motivation and satisfaction in 
completing their assignments. 
Although having to schedule labs concurrently with 
lectures can be a challenge for lecturers in terms of 
presentation order as well as for timetabling, the benefits 
clearly outweigh the additional effort required. 
Further details and downloads are available from our 
website  http://robotics.ee.uwa.edu.au . 
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