
Robotics Education using
Embedded Systems and Simulations

Thomas Bräunl

The University of Western Australia and Technical University München
EECE, CIIPS, 35 Stirling Hwy. M018, Crawley WA6009, Australia

RCS, EI, Arcisstr. 21, 80333 München, Germany
Thomas.Braunl@IEEE.org

Abstract
We have taught a number of robotics courses at Australian
and German universities, both on manipulator kinematics
and on intelligent mobile robots. In all cases has the
inclusion of lab components with hands-on embedded
robotics systems and/or simulation systems proven to be
very successful. Through this, students have gained a better
understanding and achieved a higher retention of the subject
material and have also been better motivated during the
course.

Teaching Philosophy
We have experienced the differences in university teaching
systems, both as a student and as a lecturer in the US,
Australia, and Germany. Courses in Germany usually are
not accompanied by a lab component in the same term.
They are lectures with tutorials only, while some courses
(or the combination of some courses) offer a optional lab-
only course in the following semester. Contrary to this,
most courses in Australia do have a concurrent lab
component.
Both systems have advantages and disadvantages. If labs
are delivered in the following semester, students will have
covered all required course material and will have a broad
overview of the subject area. On the down side, some
students may have already forgotten some of the material,
or even worse, as not every course offers a lab and students
only have to enroll in a certain number of lab courses, only
a fraction of the students taking a particular course will
also enroll in the corresponding lab course. So only a
minority of students will be exposed to the practical side of
the subject area.
The system that combines lectures and labs in a single
course presents a challenge for the lecturer, because he or
she has to deliver the material at the right pace, so topics
necessary for the labs will have been covered in time
during the lectures. However, this system has been found
to be very beneficial to the students, as all theoretical

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

material is being backed up with practical experience in a
near time frame.
Lab components for a course in Computer Engineering, or
more specific in Robotics, usually do require some level of
programming, both low-level and high-level. We use
assembly and gnu C/C++ cross compilers. Low-level
programming is done on the EyeBot embedded systems,
while high level programming can be done either on the
real robots (SoccerBots, driven by EyeBot controllers) or
the simulation system, using the same application program.
Students have typically taken a first year programming
course on C before enrolling in either the Embedded
Systems course or the Robotics and Automation course.
However, we do provide optional weekly tutorial sessions
throughout the semester for helping students to brush up on
their programming skills. We consider the ability to
program in Assembly and C/C++ to be a significant factor
in a future graduate’s employability. This fact should go
without mentioning, but unfortunately is not recognized in
every EE department.

Mobile Robot Systems
We use different mobile robot systems for the courses in
“Embedded Systems” and “Robotics and Automation”,
reflecting their different levels. For the 2nd year course on
Embedded Systems we use SoccerBot mobile robots,
driven by EyeBot embedded controllers. For the final year
course on “Robotics and Automation” we use Pioneer AT
outdoor mobile robots driven by notebook computers.

SoccerBot Mobile Robot and
EyeBot Embedded Controller
The EyeBot embedded controller, available from InroSoft,
is based on a 400 MHz Intel X-Scale PXA255 (ARM)
microprocessor with 16MB RAM, 4 DC motor drivers, 14
servo ports, 2 serial ports, 2 digital camera interfaces for
stereo imaging, 2 USB slaves, 1 USB host, Bluetooth,
LAN (extensible for WLAN), and on-board programmable
FGPA, allowing to conduct on-board image processing on
the robots. The controller further has a color graphics LCD
and touch panel for user input, i.e. a complete user

interface that significantly facilitates program development
and debugging when compared to other controllers.
The controller runs the Linux operating system with our
own RoBIOS extension, which comprises a monitor
program, multi-tasking system, and a comprehensive
system library with, among others, driver routines for
various sensors and actuators.
The SoccerBot mobile robot is also available from InroSoft
and measures only 16cm×10cm. It has a differential drive
system using two Faulhaber precision motors with
encapsulated gearboxes and encapsulated encoders. These
not only allow precision driving, but also make labs
possible for experimenting with feedback controllers, such
as PID control.
Each SoccerBot is further equipped with a digital color
camera and three Sharp infrared PSD (position sensitive
device) sensors. This extremely rich sensor equipment in
combination with the powerful embedded controller, both
way above the average small mobile robot used in a lab
environment, allows to conduct a virtually unlimited num-
ber of experiments in intelligent robotics.

Figure 1: SoccerBot mobile robot and EyeBot controller

Pioneer AT Mobile Robot
The Pioneer AT is one of the more high-end products from
ActivMedia. It was chosen for a final year robotics course,
because we wanted students to work in an outdoor scenario
that in many ways is more realistic than indoor settings.
Also, outdoor mobile robotics is closer to current develop-
ments in the automotive industry, such as driver-assistance
systems [Maurer, Stiller 2005].
To control each robot, we use a standard notebook compu-
ter running Windows XP that is linked to the Pioneer’s on-
board controller via a serial interface (RS232). We further
use a USB GPS and a USB web cam as the main sensors
for navigation. Unfortunately, the Pioneer ATs are not

equipped with sonar sensor as default and upgrading is
quite expensive, so we are running them without these
sensors.
The first valuable lesson the students learn when working
with the robots is that all technical systems do have some
problems that would never occur in a simulation or a mere
software-based task. This may be frustrating at times, i.e.
when the GPS again refuses to log on or the camera
initialization fails, but it will develop their problem solving
skills that will be invaluable when working in industry
after graduation.

Figure 2: Students on the cricket oval with a Pioneer AT

Simulation Systems
We have developed a number of simulation systems over
the years at Universität Stuttgart, Germany, and The
University of Western Australia. We are using these
simulation systems at various stages in our courses on
“Embedded Systems” and “Robotics and Automation”.

Hardware Simulation System Retro
Retro is a simulation system at register transfer level and
allows the construction of complete CPUs from simple
components [Bräunl 2000]. Students can construct a
working CPU and execute their own machine programs on
it. Retro greatly facilitates the understanding of the inner
working of a CPU and thereby closes the gap between
understanding of electronics at the transistor or gate level
and understanding of software development.

Figure 3: Sample CPU design in Retro

Retro provides a standard library of components, such as
adders, multipliers, combinatorial logic gates, multiplexers
and decoders, registers (banks of flip-flops) and memory
modules (RAM and ROM). Programs and data can be
placed at a memory location and saved as a file. Program
execution can be step-by-step or continuous at various
execution speeds.
Students have found this tool of great value. By actually
building their own CPU (in simulation) and being able to
run it with data, they achieve the best possible learning
outcome. The simulation helps not only to understand the
concept and inner working of a CPU completely, it also
improves the understanding of any synchronous technical
system.

Manipulator Simulation System RoboSim
RoboSim is only a demonstration implementation of a 6dof
(degree of freedom) manipulator in Java that we provide as
a standard reference to students. This simulator provides
slide rulers to change manipulator position and orientation
either in joint mode (forward kinematics) or coordinate
mode (inverse kinematics).

Figure 4: Manipulator simulation with RoboSim

One of the lab assignments students have to complete in
the Robotics course is to implement their own simulation

system of a simple 3-link manipulator. This combines
application of the kinematics equations with graphical user
interface programming, so students will gain essential
skills in both areas.
By actually having to implement a robot software system,
students will get a much deeper understanding of kine-
matics and control problems than by the traditional
assignments that require the solving of kinematics equa-
tions. Having to write manipulator simulation software, or
even better described as manipulator modeling software,
students receive a very similar learning experience to using
a real manipulator, but at a near zero cost.

Mobile Robot Simulation System EyeSim
EyeSim is a 2½ D driving simulator for multiple mobile
robots with numerous sensors, including vision [Bräunl,
Koestler, Waggershauser 2006]. EyeSim allows a robot
application program to run in a “perfect world”, thus
allowing a student to test his or her algorithm, or to run in a
much more realistic error setting that can be used for
testing an application program’s robustness [Koestler,
Bräunl 2004].
Multiple robots can interact with multiple objects and each
other in a common environment. Each robot can make use
of multitasking, while each robot’s application program is
executed in parallel to all other robots’ programs and the
global environment update.
Care has been taken to re-implement the real robot
operating system RoBIOS [Bräunl 2006] for the EyeSim
simulation system. This required to re-implement every
single RoBIOS system function, but has the invaluable
advantage that robot application programs can be
transferred from the real robot to the simulator and back
without the need to change a single line of source code. All
sensors of a SoccerBot robot, odometry, infrared distance
sensors and the camera image, are being recreated in the
simulation and fed back to the robot application program.

Figure 5: EyeSim mobile robot driving simulator

EyeSim allows to specify individual error profiles. These
include on the actuator side Gaussian errors for driving
functions (vehicle translation and rotation commands) and

on the sensor side Gaussian errors for the PSD distance
sensors (position sensitive devices), various error models
for the simulated robot camera (salt&pepper noise,
100s&1000s noise, Gaussian noise), and specific error
models for the wireless communication between robots
(message corruption and message loss).
EyeSim has become a central tool, not only for teaching,
but also for research. Especially applications that require
numerous repetitive experiments, such as training of neural
networks or evolution with genetic algorithms can benefit
from a realistic simulation system. Instead of having to
repeat time-consuming experiments over and over with
real robots and all the associated problems (placement
accuracy, battery depletion, etc.), many of these experi-
ments can now be executed on the EyeSim simulator in the
first instance, and much faster than in real time.

AUV Simulation System SubSim
While EyeSim required only a minimum of physics calcu-
lations, SubSim contains a full rigid body physics
subsystem, augmented by water (buoyancy) and propeller
equations for simulating autonomous underwater vehicles
(AUVs) [Boeing, Bräunl 2005], [Bräunl, Boeing, Gonza-
lez, Koestler 2006].
SubSim started as a research project sponsored by an
industrial partner with the intention to make the system
available to the public domain and use it for an AUV
competition track, alongside a competition for real AUVs
in the Australasian region (see [Bräunl 1999] for robot
competitions in general). The simulator could then be used
by groups that either do not have the funding (e.g. high-
schools) for building their own AUV or traveling to
Australia, or by groups that have not yet progressed far
enough with their real AUV development.

Figure 6: SubSim full physics simulator

A very basic and generic, low-level user interface has been
created as the basis for SubSim. This allows access to all
actuators and sensors and can in turn be used to implement
high-level interfaces such as RoBIOS. We have in fact
implemented our SubSim-RoBIOS interface on this low-
level interface and interested parties can design their own

operating system on this basis. AUV application programs
can be written either using the low-level interface or the
RoBIOS (or other, if available) high-level interface.
Care has also been taken to make the simulation system as
extensible as possible. Therefore, it is possible to create
one’s own AUVs, both as a detailed structural description
in XML, and as a graphics file for rendering purposes. It is
further possible to add one’s own actuators and sensors,
and finally it is possible to replace the complete physics
engine by a different package. So far we have tested and
written interfaces/plug-ins for Dynamechs, Novodex,
ODE, and Newton.

Summary
We have presented our experience on teaching methods for
the subject of intelligent robotics. The inclusion of labs
with a combination of real embedded systems and simu-
lation systems has been found to be extremely valuable as
it not only improved the students’ understanding of the
subject material and its practical applicability, it also gave
them significantly higher motivation and satisfaction in
completing their assignments.
Although having to schedule labs concurrently with
lectures can be a challenge for lecturers in terms of
presentation order as well as for timetabling, the benefits
clearly outweigh the additional effort required.
Further details and downloads are available from our
website http://robotics.ee.uwa.edu.au .

References
Boeing, A., Bräunl, T. 2005. SubSim: An autonomous
underwater vehicle simulation package, International
Symposium on Autonomous Minirobots for Research and
Edutainment, AMiRE 2005, Fukui, Japan, pp. 33-38 (6).
Bräunl, T., Boeing, A., Gonzalez, L., Koestler, A.,
Nguyen, M. 2006. Design, Modeling and Simulation of an
Autonomous Underwater Vehicle, International Journal of
Vehicle Autonomous Systems (IJVAS), to appear Oct.
2006.
T. Bräunl, Koestler, A., Waggershauser A. 2006. Fault-
Tolerant Robot Programming through Simulation with
Realistic Sensor Models, International Journal of
Advanced Robotic Systems (ARS), June 2006, vol. 3,
no. 2, pp. 99-106 (8).
Bräunl, T. 2006. Embedded Robotics - Mobile Robot
Design and Applications with Embedded Systems, 2nd Ed.,
pp. (XIV, 458), Heidelberg Berlin: Springer.
Bräunl, T. 2000, Register-Transfer Level Simulation, Proc.
of the Eighth Intl. Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
MASCOTS 2000, San Francisco CA, Aug./Sep. 2000, pp.
392–396 (5)

Bräunl T. 1999. Research Relevance of Mobile Robot
Competitions, IEEE Robotics and Automation Magazine,
vol. 6, no. 4, Dec. 1999, pp. 32–37 (6).
Koestler, A., Bräunl, T. 2004 Mobile Robot Simulation
with Realistic Error Models, International Conference on
Autonomous Robots and Agents, ICARA 2004, Palmers-
ton North, New Zealand, pp. 46-51 (6).
Maurer, M., Stiller, C. (Eds.) 2005, 3. Workshop Fahrer-
assistenzsysteme, Walting, April 2005.

