A Robotics Introduction to Computer Science

Debra T. Burhans

Canisius College, Computer Science Department
2001 Main Street WTC 207, Buffalo, NY 14208
burhansd @canisius.edu

Abstract

This paper describes a new undergraduate course that serves
two purposes. First, it satisfies a general education
requirement in mathematical sciences, and second, it serves
as a first course for computer science majors. The course
has no prerequisites: the student population is drawn
primarily from college freshmen. This paper focuses on
two aspects of the course. The curriculum, which blends
topics from basic computing, artificial intelligence, and
robotics, is discussed. The use of an in-house-developed
robot simulator in conjunction with actual robots to help
realize some of the course goals is also described.

Introduction

This paper describes a new undergraduate course that
serves two purposes. First, it satisfies a general education
requirement in mathematical sciences, and second, it
serves as a first course for computer science (CS) majors.
The course has no prerequisites: the student population is
drawn primarily from college freshmen. This paper
focuses on two aspects of the course. The curriculum,
which blends topics from basic computing, artificial
intelligence, and robotics, is discussed. The use of an in-
house-developed robot simulator in conjunction with
actual robots to help realize some of the course goals is
also described.

The robots employed in the course are Lego Mindstorms
that use the RCX platform. The simulator provides a basic
model of the brick that can be used to test student
programs both in and outside of the lab setting.

Background

Robotics courses are proliferating due to a number of
factors. Availability of low-cost robot platforms, faculty
enthusiasm, and the need to level the playing field and to
help attract new computer science majors are just some of
these. Some robotics courses are for computer science
majors and serve to introduce students to Al concepts in
the context of robotics. Others are pure robotics courses.
A growing number of schools are using robots in their
introductory courses. The majority of these efforts can be
divided into two categories. (1) Increased use of robots in
CS I and II to help students grasp fundamental concepts as
well as to boost enthusiasm and retention. (2) Robotics

courses for non-computer science majors that serve to
convey ideas from computing and Al to a general audience
through robotics.

CSCI 108 at Williams College
(http://www.cs.williams.edu/~andrea/cs108/) is an example
of the latter type of course. It provides an introduction to
the field of Al through a variety of readings and activities
including a robotics laboratory. Robots are built using the
Handyboard platform and are programmed with Interactive
C. There are no course prerequisites. The course is not
part of a CS major, rather is offered to students outside the
major to fulfill a general education requirement.

In the Fall 2006 semester George Washington University is
offering a robot-based section of its 8-week freshman
course CS 001: Computer Science Orientation
(http://www.seas.gwu.edu/%7Ebhagiweb/cs1/). This
course is designed to introduce CS majors to the field and
includes a lab-based project. The project involves teams of
students working on maze navigation with Lego
Mindstorms (RCX brick). This is a short introductory
experience for majors.

Lego Mindstorms have been used with the Ada
programming language to teach introductory computing to
both CS majors and non-majors at the US Air Force
Academy (Fagin). The stated goals of this course, along
with an assessment of the ease of doing so with robotics,
are:

...to introduce students to basic computing ideas,
including sequential control flow, selection, iteration,
input/output, arrays, graphics, procedures, and file
processing. Some of these concepts easily lend
themselves to robotics, others are a better suited for a
more conventional paradigm. Sequential control flow
is the easiest.

Many colleges offer an upper-level Al course that includes
robotics or a robotics course for CS majors.

All of our computer science majors begin with a breadth-
first computing course (CS 0) prior to their first course in
Java programming (CS 1). This introductory semester is

http://www.seas.gwu.edu/~bhagiweb/cs1/
http://www.cs.williams.edu/~andrea/cs108/

intended to help equip students with some of the skills that
are needed to succeed in CS 1. Our students overall are
weak in quantitative skills and tend to be math-phobic. A
standard programming language is not introduced in this
course because students are unprepared for the precision
and rigor it entails. It should also be noted that this course
carries 3 semester credit hours as opposed to CS 1 and
most other CS courses, which carry 4 semester credits.
Students have 4 contact hours a week in our CS 0 course
including a 50-minute lab meeting, but expectations are
considerably lower than they would be for a 4 credit
offering, particularly for work done outside of the class
meetings. This new robotics course represents a
specialization of our “vanilla” CS 0 course that must
operate within the constraints of our current CS 0. Thus, it
is also a 3 credit course with a 50 minute lab, it must
address the needs of students who are often poorly
equipped for quantitative reasoning (and often who are
taking a CS course to escape from mathematics), and must
also prepare students who are going on in the major for
their first programming course (CS 1). The goal is to
satisfy all of these needs and in doing so give students an
interesting and exciting first exposure to college-level
computer science that may encourage them to continue in
the discipline.

Curriculum

In order to develop not only this new robotics CS 0 but
other possible specialized version of the course we
identified key topics currently covered in CS 0. These
include: problem solving, algorithms, history, ethical and
social issues, databases, computer system components,
networking, WWW, software/OS, binary representation,
basic logic, limitations of computing, Al, and simulation.
These topics correspond approximately to those presented
in most CS 0 texts, some topics underlie the rest (problem
solving and algorithms) while others receive a cursory
overview (Al).

From this list we identified core topics that all of our
specialized CS 0 courses would cover: problem solving,
algorithms, history (of whatever topic is the course focus),
binary representation, basic logic, and social and ethical
issues (again, focused on the topic area). In order to
reinforce the breadth and unifying CS concepts in the
robotics course a CS 0 book was required. There was no
suitable robotics book as we do not use a traditional
programming language for the robotics; rather, we are
using our own algorithmic language.

The robotics course has covered many of the core topics
listed above as well as some other topics, endeavoring to
cast most everything in terms of robotics. This section will
highlight some of these topics as the course is still in
progress.

Material for the history of robotics unit (a combination of

history of CS and history of Al with more material from
the recent past on robotics) was assembled by the
instructor based on a number of Internet and book
resources. It was difficult to assimilate the vast amount of
material and some traditional history of CS material was
excluded. Some historical events such as the construction
of mechanical animals and people could be seen to
foreshadow the development of androids.

Hands on from the start

We elected to have each student build his or her own robot,
without any expectation as to whether this would be good
or bad. Once students started programming the robots they
worked in teams, developing programs in groups of 2 or 3
yet downloading the programs onto each individual robot.
As more complex tasks were posed, including preparing
for a competition, teams selected one robot to use for task
completion yet continued (for fun) to alter the other robots
belonging to the team. While building robots was
frustrating there was clearly value in getting one completed
and getting it to do things. Students will be surveyed at the
end of the semester to assess the value of this approach to
robot building.

Problem Solving and Algorithms

Problem solving and algorithms are the foundation of the
course and are developed primarily in the laboratory
through hands on exercises. The language used is
Robolang, which is associated with Robotran, a program
that translates Robolang programs into Lejos (http:/www-
cs.canisius.edu/~rmmeyer/ROBOTRAN/home.html). All
of the software for the course as well as the simulator has
been developed in our department. Robolang is a simple
algorithmic language that is easy for students to
understand. It provides a rich set of primitives for problem
solving and is designed specifically for use with the Lego
RCX.

The following are a couple representative Robotran
programs. The first is a simple loop to move the robot
forward, albeit slowly (three seconds forward, two seconds
back).

program prog4
while true
go forward 3 seconds
stop
go backward 2 seconds
end

The second program tests the value of a touch sensor
connected to S1. If the sensor is triggered the robot backs
up and turns right a random amount. The random function
in Robolang by default returns a value in the range 0-99.
The units for turns may be specified, here degrees are used.

http://www-cs.canisius.edu/~rmmeyer/ROBOTRAN/home.html
http://www-cs.canisius.edu/~rmmeyer/ROBOTRAN/home.html

program progl4
S1 is a touch sensor
go forward
while true
if S1 == 1 then
stop
go backward 1 second
var angle = random
turn sharp right angle degrees
go forward
end
end

Methodology: Students are first presented with a task for
the robot to complete. They work in teams to come up
with a strategy for completing the task. The strategy is
then formalized using Robolang. Robolang programs are
translated into Lejos, compiled, and downloaded onto the
robot and run.

The simulator provides an alternative to trying a program
on a real robot: programs can be run on the simulated robot
in a manner analogous to using the real robot. The
simulator is an essential component for a number of
reasons. Our resources are limited. There are not enough
robots for every student or team to use, we can’t monitor
them to the point that we could let students take them
home, and there are not enough open hours in the robot lab
to allow for extensive student experimentation. Students
generally do not have their own robot kits.

It should also be noted that, while it is fun to work with all
of the real hardware, there are times when it is simpler and
more fun to work with a keyboard and screen.

e bkt) o e
e | twmm

Figure 1. Screen shot of simulator, note that all buttons shown on
the brick (lower right hand corner) are functional and are used to
control robot activity in the simulator.

The first tasks we assign involve having the robot draw
letters. The first robots the students build (called
“penbots”) can raise and lower a pen using a third motor
(the other two are used for movement). They draw on
large pads of paper. Other tasks (without the pen
attachment) include line following, staying within a ring,

and maze navigation. We have found that letter drawing is
an ideal initial problem to work on, and the results are
immediate and visual.

Letter drawing using the simulator is also very visual and
gratifying for students to see. The simulated robot
performs “pen up” and “pen down” commands. With the
pen down the simulated robot essentially traces the path it
follows. While we have used this to work on drawing
letters, it could be used to simply keep a trace of where the
robot has been during the run of a program.

Binary Representation and Logic

The idea of different representations of information and
translation among representations is familiar to students
through the use of Robotran.

The GUI for Robotran displays both the Robolang
algorithm and the corresponding Lejos source code. The
value in this approach is that students understand that what
actually is “understood” by the computer, in this case the
RCX, is not necessarily written in the language they use to
think and problem solve. Students must compile and
download their programs, reinforcing the idea of a
hierarchy of formats and translation among them. This
provides a good basis for introducing binary representation
to students.

£ Robolang to Lejos Translator E@E\
Robolang Translator Program [vei» -l
Robolang program -

[sample Program 1| [prog17

~| Lejos program [Save Program to File -

program prog17 import josi platform rox ~

lglobal var count =0 prog17 implements SensorConstants, ButtonListener

00 forward it

continue int count = 0

public staticvoid main (Stringl) aros) ¢
prog17 2MyClass = new prog17(;

Bution VIEW addButtonListenerizhlyClass);
pause 1 second Bution RUN addButtonL istener(ziyClass);
g0 forward Bution PRGI.addButionL istener(zhlyClass),

end 2lyClass.run();
}

when VIEW button is pressed

when RUN button s pressed publicvoid run() {
stop Sensor S1.sefTypeAndhlode(SENSOR_TYPE_TOUCH, SENSOR_MODE_BC
end Sensor. 52 sefTypeAndhlode(SENSOR_TYPE_TOUCH, SENSOR_MODE_BC
Sensor 53 sefTypeAndilode(SENSOR_TYPE_LIGHT, SENSOR_MODE_PC1
when PRGN button is pressed Sensor. 53 activate();
let count = count + 1 Motor Aforward()
beep Motor G forward()
if count == 3 then while(true);
stop Hiwaltfor something to happen in a handler
end H
end publicvoid buttonPressed(Button b){
if (b.getid()==Button VIEW getid()}{
Moter & cton

Font [Sansseri | [12 ~

Figure 2. Screen shot of Robotran GUI showing Robolang on the
left and Lejos code on the right.

Note however that teaching students to translate between
bases is, at present, not done using robotics.

Once students understand binary representation they are
introduced to logic gates as the fundamental way of
manipulating the binary information in a computer. When
they see how logic functions can be used to implement bit-
wise addition they understand the power of logic for
computation. Again, this is not taught in the context of
robotics. We are currently using Logisim for circuit
building (http://ozark.hendrix.edu/~burch/logisim/).

AI and Robotics

Concepts of Al are introduced in a number of ways,
including literature and current news. Students take turns
presenting “Robots in the News” where they have to find
something in the news that focuses on robotics. Thus far
these stories have ranged from nursing home robots in
Japan to the Scooba. We have read Asimov’s I Robot and
Lem’s Cyberiad. There is an excellent episode of the
cartoon series “Futurama” (Obsoletely Fabulous) that we
showed in the class. It touches on issues including human
aggression vs. “killer robots”, the lack of souls in robots,
and Luddism. Through these fun and extremely accessible
activities students come to see the importance of Al and
robotics in their own lives. The robots they are building
and programming, while extremely simple compared to
those they encounter in fiction and the news, help them to
better understand the potential difficulties in creating
robots as well as highlighting some of the social and
ethical issues.

Logistics

The course was scheduled to meet Tuesday/Thursday,
making lecture periods 1.25 hrs in length. The laboratory
was scheduled for Thursday immediately following the
lecture for an additional hour. This allowed us the
flexibility to spend varying amounts of time up to 2.25
hours in the lab on Thursday which has proved invaluable.
Limiting the lab time to 50 minutes would not be
sufficient.

Simulator: The ability to use the simulator affects the
logistics of the course: we can do many things that would
not be possible if we had to do them all on actual robots in
a laboratory setting. The simulator enables students to
work on and test different strategies in preparation for an
upcoming competition, which involves maze navigation, a
sumo contest, and a drag race, without having to try
everything first on a real robot.

There are limitations to the simulator. For example,
modifications to the robot that make it heavier, can not
currently be represented in the simulator, but navigation
and basic sensor input can. The simulator allows users to
insert objects such as walls and blocks that the robot will
detect with touch sensors.

Results

The course is still in progress, and no doubt there will be
modifications to its next offering this coming spring. The
students are evenly divided between CS majors and non-
majors. Interestingly, students who took programming
courses in high school have proven to be the slowest at
completing tasks in the lab. It is difficult for them to work
with a simple algorithmic language even though they
clearly have not grasped many programming concepts.
They tend to be poor at following directions, which is an
essential component for success in the course.

The creation of teams has helped students work together
and to get to know one another better. It is the most
cohesive group of students I have had in many years of
teaching. They did not start this way, but have evolved
during the first two-thirds of the semester to their current
state. The shared experiences they have had (often
frustrating), particularly during the first couple weeks of
building a robot from scratch, has led them to help one
another with everything from finding robot parts to
understanding robot programs.

Interestingly, some of the intended CS majors are not as
certain that they want to continue in the major. It does not
appear that we have picked up any new majors, either. The
course may give students a better feel for what computer
science involves, and many students don’t find it
compelling. In particular, getting hardware and software
to work together can be challenging and frustrating, and
having the patience to persevere is an important trail for
CS majors. Many students discover this in CS 1 or 2,
which often have high dropout rates.

Future Work

There are a number of aspects of the course that need
tuning or further development. For example, if Robotran
could be expanded so that it could show translated forms
of the Lejos programs, including assembly language and
byte code, it could provide a seamless and compelling way
for students to understand the importance of binary
representation. An end-of-semester survey is planned to
collect data on how the course was received by students.
In addition, those students going on to CS 1 will be
compared to their peers to see how their experience in this
course affects their understanding of new concepts in that
course.

References

Barry Fagin, Using Ada-based robotics to teach computer
science, ACM SIGCSE Bulletin, v.32 n.3, p.148-151,
Sept. 2000.

