An Undergraduate Course in **Robotics & Machine Intelligence**

B.A. Juliano & R.S. Renner

Institute for Research in Intelligent Systems

California State University. Chico 400 West First Street Chico, CA 95929-0410

[Juliano, Renner]@csuChico.edu

March 26, 2007

э

Introduction

- National Science Foundation MRI / RUI grant for 2003–2006
- activities center around intelligent systems
 - curriculum development
 - research
 - outreach

3

Introduction

- National Science Foundation MRI / RUI grant for 2003–2006
- activities center around intelligent systems
 - curriculum development
 - research
 - outreach
- Intelligent Systems Laboratory (ISL)
 - www.gotbots.org

3

Introduction

イロト イヨト イヨト イヨト

э

- National Science Foundation MRI / RUI grant for 2003–2006
- activities center around intelligent systems
 - curriculum development
 - research
 - outreach
- Intelligent Systems Laboratory (ISL)
 - www.gotbots.org
- Institute for Research in Intelligent Systems (IRIS)
 - iris.ecst.csuchico.edu

Introduction

- National Science Foundation MRI / RUI grant for 2003–2006
- activities center around intelligent systems
 - curriculum development
 - research
 - outreach
- Intelligent Systems Laboratory (ISL)
 - www.gotbots.org
- Institute for Research in Intelligent Systems (IRIS)
 - iris.ecst.csuchico.edu
- CSCI 585/682, Robotics and Machine Intelligence

Scheduling Instructional Support Prerequisites

Course Organization

- Course websites:
 - http://iris.ecst.csuchico.edu/courses/csci585
 - http://iris.ecst.csuchico.edu/courses/csci682

Scheduling Instructional Support Prerequisites

Scheduling

- twice a week
 - Tuesdays and Thursdays
 - 75-minute class period
- once a week
 - Thursdays
 - 170-minute class period

Scheduling Instructional Support Prerequisites

Instructional Support

• typically team-taught by two professors

Scheduling Instructional Support Prerequisites

Instructional Support

- typically team-taught by two professors
- IRIS hires 4-8 students per semester to work with the ISL
 - includes at least one engineering student as "hardware consultant"
 - includes 2-3 graduate students (team leads)

Scheduling Instructional Support Prerequisites

Instructional Support

- typically team-taught by two professors
- IRIS hires 4-8 students per semester to work with the ISL
 - includes at least one engineering student as "hardware consultant"
 - includes 2–3 graduate students (team leads)
- students participate in
 - curriculum development
 - assisting in instruction
 - research demonstrations
 - setup and testing of exhibitions

Scheduling Instructional Support Prerequisites

The College

イロト イヨト イヨト イヨト

- College of Engineering, Computer Science, and Construction Management
 - Civil Engineering (CIVL)
 - Computer Science (CSCI)
 - Construction Management (CMGT)
 - Electrical and Computer Engineering (EECE)
 - Mechanical Engineering, Mechatronic Engineering, and Manufacturing Technology (MMEM)

Five departments with a combined offering of 11 degree programs.

Scheduling Instructional Support Prerequisites

Prerequisites

イロト イヨト イヨト イヨト

- CSCI majors
 - CSCI 220, Assembly Language Programming
 - CSCI 311, Data Structures and Algorithms
- Non-CSCI (Engineering) majors
 - EECE 135, Algorithms and Programming for Engineers
 - EECE 221, Processor Architecture and Assembly Language Programming
- Others
 - Permission of instructor

LEGO Mindstorms Parallax Boe–Bot

LEGO Mindstorms RIS 2.0

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

t bots?

э

LEGO Mindstorms Parallax Boe–Bot

LEGO Mindstorms RIS 2.0 Robotics Invention System (RIS) 2.0

LEGO Mindstorms Parallax Boe–Bot

LEGO Mindstorms RIS 2.0 BricxCC: Bricx Command Center for NQC

x Commar : Edt Se → 🔛 🛃 :24 X, E	d Center - [test.ngc] arch ⊻iew ⊆ompile] 🖴 🛛 🏘 🏛 🖡 🕞 🗶 🤇 🏹	Iools Window Hel Isols III S ▼ P III S III S III	rogram 1 💌 🕨	😐 🛛 ? é		
sk main nRev (0	() { UT A);					
nFor (0	UT_A+OUT_B, 100);					
C	de listing of test.nqc				×	
	tit Took 0 -	main			<u>^</u>	
	000 nwr	ABC. 7		13 07 02 0	7	
	004 dir	ABC, Fwd		e1 87		
	006 dir	A, Rev		e1 01		
	008 out	A, On		21 81		
	010 out	AB, On		21 83		
	012 wait	100		43 02 64 0		
	016 out	AB, Off		21 43		
	Total size:	18 bytes			-	
•						
-						-
	CONT	DOV.	lucat			

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

LEGO Mindstorms Parallax Boe–Bot

Parallax Boe–Bot

LEGO Mindstorms Parallax Boe–Bot

Basic Stamp Editor

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

LEGO Mindstorms Parallax Boe–Bots

Course Activities and Exhibitions

• Activities are designed to introduce students to robot platform-specific features

LEGO Mindstorms Parallax Boe–Bots

Course Activities and Exhibitions

- Activities are designed to introduce students to robot platform-specific features
- Exhibitions are described using *AIMA*-style (Russell & Norvig 2003) PEAS:
 - performance measure
 - environment
 - actuators
 - sensors

LEGO Mindstorms Parallax Boe–Bots

Mindstorms: Mission Mars I

æ

LEGO Mindstorms Parallax Boe–Bots

Mindstorms: Mission Mars II

LEGO Mindstorms Parallax Boe–Bots

2D-Maze Cave Rescue

sot bots? www.gotbots.org

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

LEGO Mindstorms Parallax Boe–Bots

Convoy

LEGO Mindstorms Parallax Boe–Bots

3D Grid Maze

LEGO Mindstorms Parallax Boe-Bots

Micromouse Challenge

3

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

・ロト ・四ト ・ヨト ・ヨト An Undergraduate Course in Robotics & Machine Intelligence

LEGO Mindstorms Parallax Boe–Bots

Team Garbage Collection

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

Demographics Lessons Learned Mindstorms vs. Boe–Bots Potential Alternates

Gender and Classification

	Gender		Classification					
Sem/Yr	F	Μ	FR	SO	JR	SR	GR	
Sp/2004	1	32	0	0	3	20	10	
Fa/2004	4	16	0	0	2	10	8	
Sp/2005	1	7	1	0	1	5	1	
Fa/2005	3	16	0	0	3	12	4	
Fa/2006	0	11	1	0	0	10	0	

Demographics Lessons Learned Mindstorms vs. Boe–Bots Potential Alternates

Major/Degree

	Major						
Sem/Yr	CINS	CSCI	EECE	MECA	Other		
Sp/2004	1	22	3	6	1		
Fa/2004	5	12	0	2	1		
Sp/2005	2	4	0	1	1		
Fa/2005	2	14	0	3	0		
Fa/2006	0	7	2	1	1		

Demographics Lessons Learned Mindstorms vs. Boe–Bots Potential Alternates

Lessons Learned

- Workload management
 - team-teaching
 - instructional support

Demographics Lessons Learned Mindstorms vs. Boe–Bots Potential Alternates

Lessons Learned

イロト イヨト イヨト イヨト

- Workload management
 - team-teaching
 - instructional support
- Logistics
 - cost to student
 - power source
 - maintenance: robot and exhibition parts
 - team work
 - target two exhibitions per platform
 - number of platforms

got bots?

3

Demographics Lessons Learned Mindstorms vs. Boe-Bots Potential Alternates

Feature	LEGO Mindstorms	Parallax Boe–Bot		
processor	Hitachi H8 series	BASIC Stamp 2 ¹		
	8–bit, 16 MHz	8–bit, 20 MHz		
	32 KB RAM	32 B RAM		
	16 KB ROM	2 KB EEPROM		
input	four buttons	16+2 dedicated		
	three sensor ports	serial I/O		
	IR interface	(USB available)		
output	built-in LCD screen			
	one internal speaker	breadboard		
	three actuator ports			
ISA	57 instructions	33 instructions		
	variable firmware			
	multi-tasking support			
coding	RIS 2.0 GUI	PBASIC		
	NQC, Java, Lisp			

¹Microchip PIC16C57c

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

Demographics Lessons Learned Mindstorms vs. Boe–Bots Potential Alternates

LEGO Mindstorms NXT

An Undergraduate Course in Robotics & Machine Intelligence

ant bots?

3

Demographics Lessons Learned Mindstorms vs. Boe–Bots Potential Alternates

Vex Robotics Design System

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

3

Demographics Lessons Learned Mindstorms vs. Boe–Bots Potential Alternates

Parallax SumoBot Robot Kit

B.A. Juliano & R.S. Renner — AAAI Spring Symposium 2007

An Undergraduate Course in Robotics & Machine Intelligence

aot bots?

Summary, Conclusions, & Recommendations

- Maintenance: funding and cost
 - grant
 - external funding

Summary, Conclusions, & Recommendations

- Maintenance: funding and cost
 - grant
 - external funding
- Team—teaching
 - have trained student assistants for instructional support

3

Summary, Conclusions, & Recommendations

- Maintenance: funding and cost
 - grant
 - external funding
- Team—teaching
 - have trained student assistants for instructional support
- Integrate robotics competitions/exhibitions

3

Summary, Conclusions, & Recommendations

- Maintenance: funding and cost
 - grant
 - external funding
- Team—teaching
 - have trained student assistants for instructional support
- Integrate robotics competitions/exhibitions
- Work with multiple robotics platforms

Questions?

