CS 0
Adventures in Media Computing

Introduction to Programming,
Chapter 3, 3.1..3.2
Admin

- Check your CIS account which allows you to get onto these machines – if you have issues, let us know TODAY and email me: mike@cs.hmc.edu, a time that you can come Friday.

- Twiki Page –
 https://www.cs.hmc.edu/twiki/bin/view/CS0Spring2009/WebHome
 - Make sure you register, go to: http://www.cs.hmc.edu/twiki and click on Users, look for your name. Any issues, email me: mike@cs.hmc.edu
 - On Friday, I will go through all your twiki pages with someone who can set protections. Until then, if you have issues with uploading your labs, do not worry about.

- Software
 - JES, http://coweb.cc.gatech.edu/mediaComp-teach/26
 - Media, http://coweb.cc.gatech.edu/cs1315/814

- Friday Afternoon Open Lab: 2:45 – 5:00
Today’s Goals

- To understand how our images will be “digitized” to take advantage of limits in human vision
- To look at JES model for color, RGB – Red, Green, Blue
- To manipulate color values in a picture
- To convert a color picture to grayscale
- CS – matrix representation...
- CS - look at objects...pictures
- CS - iteration in a look
- CS - nested code blocks
Pixels – Picture Elements

In gray scale image each pixel is typically one byte (8 bits – 256 values)

Figure 3.2
Cursor and icon at regular magnification on top, and close-up views of the cursor (left) and the line below the cursor (right).
Color Perception – Sensitivity of Cone Cells

NORMALIZED

UN-NORMALIZED

Original data from: Stockman & Sharpe (2000)
Encoding Color

- Each pixel encodes color for that spot in the picture
- There are many encodings for color
 - Printers use CMYK: Cyan, Magenta, Yellow, and Black
 - Humans often prefer HSV (Hue, Saturation, Brightness)
- JES uses RGB – most common for computers
 - RGB – Red, Green, Blue
In RGB, each color has 3 component colors: Amount of Red, Amount of Green, Amount of Blue

Figure 3.4
Merging red, green, and blue to make new colors.
Color Pixels

- In a color image, each pixel is typically represented with 3 bytes: one for red, one for green, one for blue
 - 24 bits per pixel
 - 16,777,216 different colors

- Image Example
 - $1280 \times 1024 = 1,310,720$ pixels
 - $1,310,720 \times 24 = 31,457,280$ bits = ~4MB

- JES provides pixel data type that has:
 - x, y position
 - R,G,B values
Pictures and Pixels
Figure 3.9

RGB triplets in a matrix representation.

See Figure 3.9, Top of page 46

from Introduction to Computing and Programming in Python, A Multimedia Approach by Mark Guzdial, ISBN: 0-13-117655-2 © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
Figure 3.7
The Macintosh OS X RGB color picker.

from Introduction to Computing and Programming in Python, A Multimedia Approach by Mark Guzdial, ISBN: 0-13-117655-2 © 2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
Figure 3.8
Picking a color using RGB sliders from JES.
Playing with Python

- Get a file, convert to picture, show the picture
 - Investigate the picture

- Get and play with Pixels
 - Look at ‘a’ pixel
 - Get all the pixels
 - Change the color of a pixel
 - Have our changed picture show up
Figure 3.10
Directly modifying the pixel colors via commands:
Note the small yellow line on the left.
Summary

- Pixels – Picture elements
 - 3 color values, Red, Green, Blue
- JES has many commands to manipulate pictures by changing RGB values for each pixel
- Lab 1 plays more with Functions. Something to do on your own. Due date is next Monday or Tuesday. See email for more information (come Friday and do it!!!)