Machine Learning with WEKA

Eibe Frank

Department of Computer Science, University of Waikato, New Zealand

- WEKA: A Machine Learning Toolkit
- The Explorer
 - Classification and Regression
 - Clustering
 - Association Rules
 - Attribute Selection
 - Data Visualization
- The Experimenter
- The Knowledge Flow GUI
- Conclusions
WEKA: the bird

Copyright: Martin Kramer (mkramer@wxs.nl)
WEKA: the software

- Machine learning/data mining software written in Java (distributed under the GNU Public License)
- Used for research, education, and applications
- Complements “Data Mining” by Witten & Frank
- Main features:
 - Comprehensive set of data pre-processing tools, learning algorithms and evaluation methods
 - Graphical user interfaces (incl. data visualization)
 - Environment for comparing learning algorithms
WEKA: versions

- There are several versions of WEKA:
 - WEKA 3.2: “GUI version” adds graphical user interfaces (book version is command-line only)
 - WEKA 3.3: “development version” with lots of improvements
- This talk is based on the latest snapshot of WEKA 3.3 (soon to be WEKA 3.4)
WEKA only deals with “flat” files

@relation heart-disease-simplified

@attribute age numeric
@attribute sex { female, male }
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina }
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes }
@attribute class { present, not_present }

@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38,female,non_anginal,?,no,not_present
...
WEKA only deals with “flat” files

@relation heart-disease-simplified

@attribute age numeric
@attribute sex { female, male}
@attribute chest_pain_type { typ_angina, asympt, non_anginal, atyp_angina}
@attribute cholesterol numeric
@attribute exercise_induced_angina { no, yes}
@attribute class { present, not_present}

@data
63,male,typ_angina,233,no,not_present
67,male,asympt,286,yes,present
67,male,asympt,229,yes,present
38,female,non_anginal,?,no,not_present
...
Weka GUI Chooser

Waikato Environment for Knowledge Analysis
(c) 1999 – 2003 University of Waikato New Zealand

02/13/05 University of Waikato
Weka GUI Chooser

Waikato Environment for Knowledge Analysis

(c) 1999 – 2003
University of Waikato
New Zealand

02/13/05

University of Waikato

8
Explorer: pre-processing the data

- Data can be imported from a file in various formats: ARFF, CSV, C4.5, binary
- Data can also be read from a URL or from an SQL database (using JDBC)
- Pre-processing tools in WEKA are called “filters”
- WEKA contains filters for:
 - Discretization, normalization, resampling, attribute selection, transforming and combining attributes, …
Weka Knowledge Explorer

Preprocess | Classify | Cluster | Associate | Select attributes | Visualize

Open file... | Open URL... | Open DB... | Undo | Save...

Filter
Choose: None

Current relation
Relation: iris
Instances: 150
Attributes: 5

Attributes
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sepal length</td>
</tr>
<tr>
<td>2</td>
<td>sepal width</td>
</tr>
<tr>
<td>3</td>
<td>petal length</td>
</tr>
<tr>
<td>4</td>
<td>petal width</td>
</tr>
<tr>
<td>5</td>
<td>class</td>
</tr>
</tbody>
</table>

Selected attribute
Name: sepal length
Missing: 0 (0%)
Distinct: 35
Type: Numeric
Unique: 9 (6%)

Statistic Value
Minimum 4.3
Maximum 7.9
Mean 5.843
StdDev 0.828

Colour: class (Nom)

Status
OK
Current relation
- **Relation:** iris
- **Instances:** 150
- **Attributes:** 5

Selected attribute
- **Name:** class
- **Missing:** 0 (0%)
- **Distinct:** 3
- **Type:** Nominal
- **Unique:** 0 (0%)

<table>
<thead>
<tr>
<th>Label</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>50</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>50</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>50</td>
</tr>
</tbody>
</table>

Colour: class (Nom)
- Iris-setosa: Blue
- Iris-versicolor: Red
- Iris-virginica: Cyan
Discretize -B 10 -R first-last
Weka Knowledge Explorer

Preprocess

Open file... **Open URL...** **Open DB...** **Undo** **Save...**

Filter

Choose: **Discretize** -B 10 -R first-last

About

A instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes.

Attributes

<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>attributeIndices</th>
<th>bins</th>
<th>findNumBins</th>
<th>invertSelection</th>
<th>makeBinary</th>
<th>useEqualFrequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sepal length</td>
<td>first-last</td>
<td></td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>2</td>
<td>sepal width</td>
<td></td>
<td></td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>3</td>
<td>petal length</td>
<td></td>
<td>10</td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>4</td>
<td>petal width</td>
<td></td>
<td></td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>5</td>
<td>class</td>
<td></td>
<td></td>
<td>False</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
</tbody>
</table>

Status

OK
Weka Knowledge Explorer

Filter
Choose Discretize -F -B 10 -R first-last

Current relation
Relation: iris
Instances: 150
Attributes: 5

Attributes
<table>
<thead>
<tr>
<th>No.</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sepalwidth</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>sepallength</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>petallength</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>petalwidth</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>class</td>
<td></td>
</tr>
</tbody>
</table>

Selected attribute
Name: petallength
Missing: 0 (0%)
Distinct: 43
Unique: 10 (7%)

Statistic	Value
Minimum | 1
Maximum | 6.9
Mean | 3.759|
StdDev | 1.764|

Colour: class (Nom)
Current relation
Relation: iris-weka.filters.unsupervised.attribute.Discretize
Instances: 150 Attributes: 5

Attributes
No. Name
1 sepallength
2 sepalwidth
3 petallength
4 petalwidth
5 class

Selected attribute
Name: petallength
Missing: 0 (0%) Distinct: 10
Unique: 0 (0%) Type: Nominal

Label Count
['(-inf-1.45]'] 23
'[1.45-1.55]'] 14
'[1.55-1.8]'] 13
'[1.8-3.95]'] 11
'[3.95-4.35]'] 14
'[4.35-4.65]'] 15
'[4.65-5.05]'] 18

Colour: class (Nom) Visualize All
Explorer: building “classifiers”

- Classifiers in WEKA are models for predicting nominal or numeric quantities
- Implemented learning schemes include:
 - Decision trees and lists, instance-based classifiers, support vector machines, multi-layer perceptrons, logistic regression, Bayes’ nets, …
- “Meta”-classifiers include:
 - Bagging, boosting, stacking, error-correcting output codes, locally weighted learning, …
Classifier

Choose J48 -C 0.25 -M 2

Test options

- Use training set
- Supplied test set [Set...]
- Cross-validation [Folds 10]
- Percentage split [% 66]

More options...

(Nom) class

Start Stop

Result list (right-click for options)

11:49:05 - trees.j48,J48

Classifier output

Run information

Scheme:	weka.classifiers.trees.j48 -C 0.25 -M 2
Relation:	iris
Instances:	150
Attributes:	5
sepalwidth	
testlength	
Test mode:	split 66% train, remainder test

Classifier model (full training set)

J48 pruned tree

petalwidth <= 0.6: Iris-setosa (50.0)
petalwidth > 0.6
| petalwidth <= 1.7 |
| petalwidth <= 1.7 |
| petalwidth <= 1.5: Iris-versicolor (48.0/1.0) |
| petalwidth <= 1.5: Iris-virginica (3.0) |
| petalwidth >= 1.7: Iris-versicolor (3.0/1.0) |
| petalwidth > 1.7: Iris-virginica (46.0/1.0) |

Number of Leaves: 5

Status

OK
Classifier output

=== Run information ===
Scheme: weka.classifiers.trees.j48.J48 -C 0.25 -M 2
Relation: iris
Instances: 150
Attributes: 5
 sepalwidth
 petallength
 petalwidth
 class
Test mode: split 66% train, remainder test

=== Classifier model (full training set) ===

J48 pruned tree

petalwidth <= 0.6: Iris-setosa (50.0)
petalwidth > 0.6
 | petalwidth <= 1.7
 | | petallength <= 4.9: Iris-versicolor (48.0/1.0)
 | | petallength > 4.9
 | | | petalwidth <= 1.5: Iris-virginica (3.0)
 | | petalwidth > 1.5: Iris-versicolor (3.0/1.0)
 | petalwidth > 1.7: Iris-virginica (46.0/1.0)

Number of Leaves: 5
Classifier output

Time taken to build model: 0.24 seconds

--- Evaluation on test split ===

Correctly Classified Instances 49 96.0784 %
Incorrectly Classified Instances 2 3.9216 %
Kappa statistic 0.9408
Mean absolute error 0.0396
Root mean squared error 0.1579
Relative absolute error 8.8979 %
Root relative squared error 33.4091 %
Total Number of Instances 51

--- Detailed Accuracy By Class ===

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1.063</td>
<td>0</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ===

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

<-- classified as
a = Iris-setosa
b = Iris-versicolor
c = Iris-virginica
Classifier output:

Time taken to build model: 0.24 seconds

--- Evaluation on test split ---

--- Summary ---

Correctly Classified Instances 49 96.0784%
Incorrectly Classified Instances 2 3.9216%
Kappa statistic 0.9408
Mean absolute error 0.0396
Root mean squared error 0.1579
Relative absolute error 8.8979%
Root relative squared error 33.4091%
Total Number of Instances 51

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

a b c --- classified as
15 0 0 a = Iris-setosa
19 0 0 b = Iris-versicolor
12 15 0 c = Iris-virginica
Time taken to build model: 0.24 seconds

--- Evaluation on test split ---
--- Summary ---

Correctly Classified Instances 49 96.0784 %
Incorrectly Classified Instances 2 3.9216 %
Kappa statistic 0.9408
Mean absolute error 0.0396
Root mean squared error 0.1579
Relative absolute error 8.8979 %
Root relative squared error 33.4091 %
Total Number of Instances 51

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>Class</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1</td>
<td>1</td>
<td>Iris-versicolor</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0.938</td>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0.938</td>
</tr>
</tbody>
</table>
Time taken to build model: 0.24 seconds

Correctly Classified Instances 49 96.0784%
Incorrectly Classified Instances 2 3.9216%
Kappa statistic 0.9408
Mean absolute error 0.0396
Root mean squared error 0.1579
Relative absolute error 8.8979%
Root relative squared error 33.4091%
Total Number of Instances 51

Detailed Accuracy By Class

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Iris-setosa</th>
<th>Iris-versicolor</th>
<th>Iris-virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
<td>Iris-versicolor</td>
<td>Iris-versicolor</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
<td>Iris-virginica</td>
<td>Iris-virginica</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

Confusion Matrix

```
 a b c  <-- classified as
15 0 0 | a = Iris-setosa
0 19 0 | b = Iris-versicolor
0 2 15 | c = Iris-virginica
```
Choose J48 -C 0.25 -M 2

Test options
- Use training set
- Supplied test set Set...
- Cross-validation Folds 10
- Percentage split % 66

(Nom) class

Start Stop

Result list (right-click for options)
11:49:05 - trees.j48.j48

Classifier output
Time taken to build model: 0.24 seconds

== Evaluation on test split ==
== Summary ==
Correctly Classified Instances 49 96.0784 %
Incorrectly Classified Instances 2 3.9216 %
Kappa statistic 0.9408
Mean absolute error 0.0396
Root mean squared error 0.1579
Relative absolute error 8.8979 %
Root relative squared error 33.4091 %
Total Number of Instances 51

== Detailed Accuracy By Class ==
<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>1</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

== Confusion Matrix ==
a b c <-- classified as
15 0 0 | a = Iris-setosa
0 19 0 | b = Iris-versicolor
0 2 15 | c = Iris-virginica

Status
OK
Confusion Matrix ===

<table>
<thead>
<tr>
<th></th>
<th>a = Iris-setosa</th>
<th>b = Iris-versicolor</th>
<th>c = Iris-virginica</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>

Detailed Accuracy By Class ===

<table>
<thead>
<tr>
<th>Class</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
</tr>
</tbody>
</table>

Evaluation on test split ===

Summary ===

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Accuracy</td>
<td>96.0784%</td>
</tr>
<tr>
<td>Number of Instances</td>
<td>51</td>
</tr>
<tr>
<td>Number of Patterns</td>
<td>2</td>
</tr>
<tr>
<td>Absolute Error</td>
<td>0.0396</td>
</tr>
<tr>
<td>Relative Absolute Error</td>
<td>3.9216%</td>
</tr>
<tr>
<td>Mean Squared Error</td>
<td>0.1579</td>
</tr>
<tr>
<td>Relative Mean Squared Error</td>
<td>8.8979%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Time taken to build model: 0.24 seconds
Classifier:

Choose **NeuralNetwork** -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a

Test options:

- Use training set
- Supplied test set
- Cross-validation (Folds 10)
- **Percentage split** (% 66)

More options...

(Nom) class

Result list (right-click for options):

11:49:05 - trees.j48.j48

Classifier output:

--- Evaluation on test split ---
--- Summary ---

Correctly Classified Instances 49 96.0784 %
Incorrectly Classified Instances 2 3.9216 %

Kappa statistic 0.9408
Mean absolute error 0.0396
Root mean squared error 0.1579
Relative absolute error 8.8979 %
Root relative squared error 33.4091 %
Total Number of Instances 51

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>1</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

a	b	c	<--- classified as
15 | 0 | 0 | a = Iris-setosa
0 | 19| 0 | b = Iris-versicolor
0 | 2 | 15| c = Iris-virginica
Choose NeuralNetwork -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a -G -R

Correctly Classified Instances 50 98.0392 %
Incorrectly Classified Instances 1 1.9608 %
Kappa statistic 0.9704
Mean absolute error 0.0239
Root mean squared error 0.1101
Relative absolute error 5.3594 %
Root relative squared error 23.2952 %
Total Number of Instances 51

Detailed Accuracy By Class

<table>
<thead>
<tr>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>1</td>
<td>0.031</td>
<td>0.95</td>
<td>1</td>
<td>0.974</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>0.941</td>
<td>0</td>
<td>1</td>
<td>0.941</td>
<td>0.97</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

Confusion Matrix

<table>
<thead>
<tr>
<th>a b c</th>
<th>classified as</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 0 0</td>
<td>a = Iris-setosa</td>
</tr>
<tr>
<td>0 19 0</td>
<td>b = Iris-versicolor</td>
</tr>
<tr>
<td>0 1 16</td>
<td>c = Iris-virginica</td>
</tr>
</tbody>
</table>
Evaluation on test split

<table>
<thead>
<tr>
<th>Class</th>
<th>Correctly Classified Instances</th>
<th>Incorrectly Classified Instances</th>
<th>Kappa statistic</th>
<th>Mean absolute error</th>
<th>Mean squared error</th>
<th>Relative absolute error</th>
<th>Relative squared error</th>
<th>Total Number of Instances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>50</td>
<td>1</td>
<td>0.9704</td>
<td>0.0239</td>
<td>0.1101</td>
<td>5.3594</td>
<td>23.2952</td>
<td>51</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>49</td>
<td>1</td>
<td>0.9536</td>
<td>0.031</td>
<td>0.0953</td>
<td>5.5556</td>
<td>23.2952</td>
<td>51</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>50</td>
<td>1</td>
<td>0.9410</td>
<td>1</td>
<td>0.9410</td>
<td>5.3594</td>
<td>23.2952</td>
<td>51</td>
</tr>
</tbody>
</table>

Detailed Accuracy By Class

<table>
<thead>
<tr>
<th>Class</th>
<th>Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.941</td>
<td>0.031</td>
<td>0.95</td>
<td>1</td>
<td>0.974</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.941</td>
<td>0.97</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

Confusion Matrix

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>a = Iris-setosa</td>
</tr>
<tr>
<td>0</td>
<td>19</td>
<td>0</td>
<td>b = Iris-versicolor</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>16</td>
<td>c = Iris-virginica</td>
</tr>
</tbody>
</table>
QuickTime and a TIFF (LZW) decompressor are needed to see this picture.
Classifier:
Choose: NaiveBayes

Test options:
- Use training set
- Supplied test set
- Cross-validation
- Percentage split: % 66

Classifier output:

--- Evaluation on test split ---
--- Summary ---
Correctly Classified Instances 48 94.1176 %
Incorrectly Classified Instances 3 5.8824 %
Kappa statistic 0.9113
Mean absolute error 0.0447
Root mean squared error 0.1722
Relative absolute error 10.0365 %
Root relative squared error 36.4196 %
Total Number of Instances 51

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>0.947</td>
<td>0.063</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.882</td>
<td>0.029</td>
<td>0.938</td>
<td>0.882</td>
<td>0.909</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0.029</td>
<td>0.938</td>
<td>0.882</td>
<td>0.909</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

a b c <-- classified as
15 0 0 | a = Iris-setosa
0 18 1 | b = Iris-versicolor
0 2 15 | c = Iris-virginica
Classifier

Choose NaiveBayes

Test options

- Use training set
- Supplied test set
- Cross-validation Folds 10
- Percentage split % 66

Classifer output

=== Evaluation on test split ===
=== Summary ===

Correctly Classified Instances 48 99.1176 %
Incorrectly Classified Instances 3 5.8824 %
Kappa statistic 0.9113
Mean absolute error 0.0447
Root mean squared error 0.1722
Relative absolute error 10.0365 %
Root relative squared error 36.4196 %
Total Number of Instances 51

=== Detailed Accuracy By Class ===

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>0.947</td>
<td>0.063</td>
<td>0.9</td>
<td>1</td>
<td>0.923</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.882</td>
<td>0.029</td>
<td>0.938</td>
<td>0.947</td>
<td>0.909</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.822</td>
<td>0.180</td>
<td>0.915</td>
<td>0.947</td>
<td>0.882</td>
</tr>
</tbody>
</table>

=== Confusion Matrix ===

a b c <--- classified as
15 0 0 | a = Iris-setosa
0 18 1 | b = Iris-versicolor
0 2 15 | c = Iris-virginica
Choose NaiveBayes

--- Evaluation on test split ---
--- Summary ---
Correctly Classified Instances 48 94.1176%
Incorrectly Classified Instances 3 5.8824%
Kappa statistic 0.9113
Mean absolute error 0.0447
Root mean squared error 0.1722
Relative absolute error 10.0365%
Root relative squared error 36.4196%
Total Number of Instances 51

--- Detailed Accuracy By Class ---
<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>0.947</td>
<td>0.063</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.882</td>
<td>0.029</td>
<td>0.938</td>
<td>0.947</td>
<td>0.923</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

a	b	c	--- classified as
15	0	0	a = Iris-setosa
0	18	1	b = Iris-versicolor
0	2	15	c = Iris-virginica
Classifier output

== Evaluation on test split ==
== Summary ==

correctly Classified Instances | 48 | 94.1176 %
correctly Classified Instances | 3 | 5.8824 %
apparent statistic | 0.9113|
mean absolute error | 0.0447|
oot mean squared error | 0.1722|
relative absolute error | 10.0365 %
oot relative squared error | 36.4196 %
total Number of Instances | 51 |

== Detailed Accuracy By Class ==

<table>
<thead>
<tr>
<th>Class</th>
<th>P Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1.0</td>
<td>0.063</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.947</td>
<td>0.029</td>
<td>0.9</td>
<td>0.947</td>
<td>0.923</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0.032</td>
<td>0.882</td>
<td>0.938</td>
<td>0.909</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

== Confusion Matrix ==

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>18</td>
<td>1</td>
<td>19</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>2</td>
<td>15</td>
<td>17</td>
</tr>
</tbody>
</table>

Status: OK
Classifier Output

Evaluation on test split

Summary

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly Classified Instances</td>
<td>49</td>
<td>96.0784%</td>
</tr>
<tr>
<td>Incorrectly Classified Instances</td>
<td>2</td>
<td>3.9216%</td>
</tr>
<tr>
<td>Kappa statistic</td>
<td>0.9408</td>
<td></td>
</tr>
<tr>
<td>Mean absolute error</td>
<td>0.0319</td>
<td></td>
</tr>
<tr>
<td>Root mean squared error</td>
<td>0.1622</td>
<td></td>
</tr>
<tr>
<td>Relative absolute error</td>
<td>7.1634%</td>
<td></td>
</tr>
<tr>
<td>Root relative squared error</td>
<td>34.3122%</td>
<td></td>
</tr>
<tr>
<td>Total Number of Instances</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

Detailed Accuracy By Class

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

Confusion Matrix

```
a b c  <--- classified as
15 0 0  | a = Iris-setosa
0 19 0  | b = Iris-versicolor
0 2 15  | c = Iris-virginica
```
QuickTime and a TIFF (LZW) decompressor are needed to see this picture.
Weka Knowledge Explorer

Classifier

Choose: UserClassifier

Test options

- Use training set
- Supplied test set
- Cross-validation Folds 10
- Percentage split % 66

Attributes

(Num) sepal length
(Num) sepal width
(Num) petal length
(Num) petal width
(Nom) class

(Num) petal length selected

Classifier output

=== Evaluation on test split ===

Correctly Classified Instances 49 96.0784 %
Incorrectly Classified Instances 2 3.9216 %
Kappa statistic 0.9408
Mean absolute error 0.0319
Root mean squared error 0.1622
Relative absolute error 7.1634 %
Root relative squared error 34.312 %
Total Number of Instances 51

=== Detailed Accuracy By Class ===

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>1</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

=== Confusion Matrix ===

a b c <-- classified as
15 0 0 | a = Iris-setosa
0 19 0 | b = Iris-versicolor
0 2 15 | c = Iris-virginica
Classifier

Choose: UserClassifier

Test options

- **Use training set**
- **Supplied test set**
- **Cross-validation**
- **Percentage split**

Classifier output

<table>
<thead>
<tr>
<th>Evaluation on test split</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly Classified Instances</td>
<td>49</td>
</tr>
<tr>
<td>Incorrectly Classified Instances</td>
<td>2</td>
</tr>
<tr>
<td>Kappa statistic</td>
<td>0.9408</td>
</tr>
<tr>
<td>Mean absolute error</td>
<td>0.0319</td>
</tr>
<tr>
<td>Root mean squared error</td>
<td>0.1622</td>
</tr>
<tr>
<td>Relative absolute error</td>
<td>7.1634%</td>
</tr>
<tr>
<td>Root relative squared error</td>
<td>34.312%</td>
</tr>
<tr>
<td>Total Number of Instances</td>
<td>51</td>
</tr>
</tbody>
</table>

Detailed Accuracy By Class

<table>
<thead>
<tr>
<th>Class</th>
<th>TP Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iris-setosa</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Iris-versicolor</td>
<td>0.882</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
</tr>
<tr>
<td>Iris-virginica</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
</tr>
</tbody>
</table>

Confusion Matrix

```
   a  b  c <-- classified as
15 0  0 | a = Iris-setosa
 0 19  0 | b = Iris-versicolor
 0  2 15 | c = Iris-virginica
```
Classifier Output

--- Evaluation on test split ---
--- Summary ---

- Correctly Classified Instances: 49 (96.0784 %)
- Incorrectly Classified Instances: 2 (3.9216 %)
- Kappa statistic: 0.9408
- Mean absolute error: 0.0319
- Root mean squared error: 0.1622
- Relative absolute error: 7.1634 %
- Root relative squared error: 34.312 %
- Total Number of Instances: 51

--- Detailed Accuracy By Class ---

<table>
<thead>
<tr>
<th>Rate</th>
<th>FP Rate</th>
<th>Precision</th>
<th>Recall</th>
<th>F-Measure</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Iris-setosa</td>
</tr>
<tr>
<td>1</td>
<td>0.063</td>
<td>0.905</td>
<td>1</td>
<td>0.95</td>
<td>Iris-versicolor</td>
</tr>
<tr>
<td>0.882</td>
<td>0</td>
<td>1</td>
<td>0.882</td>
<td>0.938</td>
<td>Iris-virginica</td>
</tr>
</tbody>
</table>

--- Confusion Matrix ---

```
a b c  <-- classified as
15 0 0  |  a = Iris-setosa
19 0 2 15 | b = Iris-versicolor
```

Status: OK
Run information

Scheme: weka.classifiers.trees.m5.M5P -M 4.0
Relation: iris
Instances: 150
Attributes: 5
 sepal length
 sepal width
 petal length
 petal width
 class

Test mode: split 66% train, remainder test

Classifier model (full training set)

M5 pruned model tree:
(using smoothed predictions)

petal width <= 0.8 : LM1 (50/10.469%)
petal width > 0.8 :
 | class=Iris-virginica <= 0.5 : LM2 (50/14.325%)
 | class=Iris-virginica > 0.5 : LM3 (50/17.598%)

LM num: 1
Linear Regression Model

petal length =
0.4257 + petal width
Classifier output:

1. class=iris-virginica > 0.5 : LMs (50/17.598)
 LM num: 1
 Linear Regression Model
 petallength =
 0.4957 * petalwidth + 1.343

LM num: 2
Linear Regression Model
petallength =
 0.4208 * sepalwidth + 1.2692 * petalwidth + 0.0795

LM num: 3
Linear Regression Model
petallength =
 0.7501 * sepalwidth + 0.6105

Number of Rules : 3
Classifier output

petallength

0.4208 * sepalwidth + 1.2692 * petalwidth + 0.0795

LM num: 3
Linear Regression Model

petallength = 0.7501 * sepalwidth + 0.6105

Number of Rules : 3

Time taken to build model: 1.31 seconds

--- Evaluation on test split ---
--- Summary ---

Correlation coefficient 0.9889
Mean absolute error 0.1861
Root mean squared error 0.255
Relative absolute error 11.9578 %
Root relative squared error 14.9153 %
Total Number of Instances 51

Status
OK
Classifier output

```
0.4208 * sepalwidth +
1.2692 * petalwidth +
0.0795
```

LM num: 3
Linear Regression Model
petallength =
```
0.7501 * sepalwidth +
0.6105
```

Number of Rules : 3
Time taken to build model: 1.31 seconds

--- Evaluation on test split ---
--- Summary ---

Correlation coefficient 0.9889
Mean absolute error 0.1861
Root mean squared error 0.255
Relative absolute error 11.9578 %
Root relative squared error 14.9153 %
Total Number of Instances 51
Instance: 31

- Instance_number: 31.0
- sepal_length: 6.9
- sepal_width: 3.1
- predicted_petal_length: 5.892812341943582
- petal_length: 5.1
- petal_width: 2.3
- class: Iris-virginica
Explorer: clustering data

- WEKA contains “clusterers” for finding groups of similar instances in a dataset
- Implemented schemes are:
 - k-Means, EM, Cobweb, X-means, FarthestFirst
- Clusters can be visualized and compared to “true” clusters (if given)
- Evaluation based on loglikelihood if clustering scheme produces a probability distribution
Clusterer

Choose: EM -l 100 -N -1 -S 100 -M 1.0E-6

Cluster mode
- Use training set
- Supplied test set
- Percentage split: 66%
- Classes to clusters evaluation
 (Nom) class
- Store clusters for visualization

Ignore attributes

Start

Cluster output

Status: OK
Clusterer

- **Choose**: **Cobweb** -A 1.0 -C 0.0028209479177387815

Cluster mode

- Use training set
- Supplied test set
- Percentage split
- Classes to clusters evaluation

Store clusters for visualization

Ignore attributes

Start

Result list (right-click for options)

16:05:58 - Cobweb

--- Run information ---

Scheme:	weka.clusterers.Cobweb -A 1.0 -C 0.002820947917
Relation:	iris
Instances:	150
Attributes:	5
ignored:	class

Test mode: Classes to clusters evaluation on training data

--- Clustering model (full training set) ---

- Number of merges: 0
- Number of splits: 0
- Number of clusters: 3

node 0 [150]
- leaf 1 [96]

node 0 [150]
- leaf 2 [54]

--- Evaluation on training set ---
Clusterer:
Choose: Cobweb -A 1.0 -C 0.0028209479177387815

Cluster mode:
- Classes to clusters evaluation
- Store clusters for visualization

Clusterer output:
Number of clusters: 3

node 0 [150]
 leaf 1 [96]
node 0 [150]
 leaf 2 [54]

Clustered Instances:
1 100 (67%)
2 50 (33%)

Class attribute: class
Classes to Clusters:
1 2 --> assigned to cluster
0 50 | Iris-setosa
50 0 | Iris-versicolor
50 0 | Iris-virginica

Cluster 1 --> Iris-versicolor
Cluster 2 --> Iris-setosa

Incorrectly clustered instances: 50.0 33.3333%
Clusterer

Choose Cobweb -A 1.0 -C 0.0028209479177387815

Cluster mode

- Use training set
- Supplied test set
- Percentage split
- Classes to clusters evaluation

Store clusters for visualization

Clusterer output

Number of clusters: 3

node 0 [150]
 | leaf 1 [96]
node 0 [150]
 | leaf 2 [54]

Clipped Instances

1 100 (67%)
2 50 (33%)

Class attribute: class
Classes to Clusters:

1 2 <-- assigned to cluster
0 50 | Iris-setosa
50 0 | Iris-versicolor
50 0 | Iris-virginica

Cluster 1 <-- Iris-versicolor
Cluster 2 <-- Iris-setosa

Incorrectly clustered instances: 50.0 33.3333 %
Explorer: finding associations

- **WEKA** contains an implementation of the Apriori algorithm for learning association rules
 - Works only with discrete data
- Can identify statistical dependencies between groups of attributes:
 - milk, butter \Rightarrow bread, eggs (with confidence 0.9 and support 2000)
- Apriori can compute all rules that have a given minimum support and exceed a given confidence
Choose Apriori -N 10 -T 0 -C 0.9 -D 0.05 -U 1.0 -M 0.1 -S 1.0

Start Stop

Result list (right-click for options)

Associator output

Status
OK
Minimum metric <confidence>: 0.9
Number of cycles performed: 11

Generated sets of large itemsets:

Size of set of large itemsets L(1): 20
Size of set of large itemsets L(2): 17
Size of set of large itemsets L(3): 6
Size of set of large itemsets L(4): 1

Best rules found:

1. adoption-of-the-budget-resolution=y physician-fee-freeze=n 219 ==> Class=democrat 200
2. adoption-of-the-budget-resolution=y physician-fee-freeze=n aid-to-nicaraguan-contras=n 211 ==> Class=democrat 201
3. physician-fee-freeze=n aid-to-nicaraguan-contras=y 211 ==> Class=democrat 210
4. physician-fee-freeze=n education-spending=n 202 ==> Class=democrat 201 conf:(0.99)
5. physician-fee-freeze=n 247 ==> Class=democrat 245 conf:(0.98)
6. el-salvador-aid=n Class=democrat 200 ==> aid-to-nicaraguan-contras=y 197 conf:
7. el-salvador-aid=n 208 ==> aid-to-nicaraguan-contras=y 204 conf:(0.98)
8. adoption-of-the-budget-resolution=y aid-to-nicaraguan-contras=y Class=democrat 200
9. el-salvador-aid=n aid-to-nicaraguan-contras=y Class=democrat 197 conf:
10. aid-to-nicaraguan-contras=y Class=democrat 218 ==> physician-fee-freeze=n 210
Explorer: attribute selection

- Panel that can be used to investigate which (subsets of) attributes are the most predictive ones
- Attribute selection methods contain two parts:
 - A search method: best-first, forward selection, random, exhaustive, genetic algorithm, ranking
 - An evaluation method: correlation-based, wrapper, information gain, chi-squared, ...
- Very flexible: WEKA allows (almost) arbitrary combinations of these two
Attribute selection output

duty-free-exports
export-administration-act-south-africa
Class

Evaluation mode: evaluate on all training data

--- Attribute Selection on all input data ---

Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 83
Merit of best subset found: 0.729

Attribute Subset Evaluator (supervised, Class (nominal): 17 Class):
CFS Subset Evaluator

Selected attributes: 4 : 1
physician-fee-freeze
Attribute Evaluator

Choose CfsSubsetEval

Search Method

Choose BestFirst -D 1 -N 5

Attribute Selection Mode

Use full training set

Attribute selection output

- duty-free-exports
- export-administration-act-south-africa

Evaluation mode: evaluate on all training data

--- Attribute Selection on all input data ---

Search Method:
- Best first.
- Start set: no attributes
- Search direction: forward
- Stale search after 5 node expansions
- Total number of subsets evaluated: 83
- Merit of best subset found: 0.729

Attribute Subset Evaluator (supervised, Class (nominal): 17 Class):
- CFS Subset Evaluator

Selected attributes: 4 : 1
- physician-fee-freeze
Attribute Evaluator

- weka
 - attributeSelection
 - CfsSubsetEval
 - ClassifierSubsetEval
 - WrapperSubsetEval
 - ConsistencySubsetEval
 - ReliefFAttributeEval
 - InfoGainAttributeEval
 - GainRatioAttributeEval
 - SymmetricalUncertAttributeEval
 - OneRAttributeEval
 - ChiSquaredAttributeEval
 - PrincipalComponents
 - SVMAttributeEval

Attribute selection output

duty-free-exports
export-administration-act-south-africa
Class

Evaluation mode: evaluate on all training data

Attribute Selection on all input data ===

Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 83
Merit of best subset found: 0.729

Attribute Subset Evaluator (supervised, Class (nominal): 17 Class):
CFS Subset Evaluator

Selected attributes: 4 : 1
physician-fee-freeze
Attribute Evaluator

Choose InfoGainAttributeEval

Search Method

weka
attributeSelection

BestFirst
ForwardSelection
RaceSearch
GeneticSearch
RandomSearch
ExhaustiveSearch
Ranker
RankSearch

Attribute Selection on all input data ===

duty-free-exports
export-administration-act-south-africa
Class

Evaluation mode: evaluate on all training data

Search Method:
Best first.
Start set: no attributes
Search direction: forward
Stale search after 5 node expansions
Total number of subsets evaluated: 83
Merit of best subset found: 0.729

Attribute Subset Evaluator (supervised, Class (nominal): 17 Class):
CFS Subset Evaluator

Selected attributes: 4 : 1
physician-fee-freeze
Attribute Evaluator

Choose InfoGainAttributeEval

Search Method

Choose Ranker - T -1.7976931348623157E308 -N -1

Attribute Selection Mode

Use full training set

Cross-validation Folds 10
Seed 1

(Nom) Class

Attribute selection output

Start

Result list (right-click for options)

16:39:40 - BestFirst + ChiSubsetEval
Attribute Evaluator

Choose: InfoGainAttributeEval

Search Method

Choose: Ranker -T -1.7976931348623157E308 -N -1

Attribute Selection Mode

- Use full training set
- Cross-validation
 - Folds: 10
 - Seed: 1

(Nom) Class

Start

Stop

Result list (right-click for options)

16:39:40 - BestFirst + CfsSubsetEval
16:43:05 - Ranker + InfoGainAttributeEval

Attribute selection output

Information Gain Ranking Filter

Ranked attributes:

0.7078541 4 physician-fee-freeze
0.4185726 3 adoption-of-the-budget-resolution
0.4028397 5 el-salvador-aid
0.34036 12 education-spending
0.3123121 14 crime
0.3095576 8 aid-to-nicaraguan-contras
0.2856444 9 mx-missile
0.2121705 13 superfund-right-to-sue
0.2013666 15 duty-free-exports
0.1902427 7 anti-satellite-test-ban
0.1404643 6 religious-groups-in-schools
0.1211834 1 handicapped-infants
0.1007458 11 synfuels-corporation-cutback
0.0529956 16 export-administration-act-south-africa
0.049097 10 immigration
0.004907 12 water-project-cost-sharing
0.0000117 2

Selected attributes: 4, 3, 5, 12, 14, 8, 9, 13, 15, 7, 6, 1, 11, 16, 10, 2 : 16
Explorer: data visualization

- Visualization very useful in practice: e.g. helps to determine difficulty of the learning problem
- WEKA can visualize single attributes (1-d) and pairs of attributes (2-d)
 - To do: rotating 3-d visualizations (Xgobi-style)
- Color-coded class values
- “Jitter” option to deal with nominal attributes (and to detect “hidden” data points)
- “Zoom-in” function
Performing experiments

- Experimenter makes it easy to compare the performance of different learning schemes
- For classification and regression problems
- Results can be written into file or database
- Evaluation options: cross-validation, learning curve, hold-out
- Can also iterate over different parameter settings
- Significance-testing built in!
Weka Experiment Environment

- Setup
- Run
- Analyse

Log

Status

Not running
10:33:04: Started
13:41:15: Finished
13:41:15: There were 0 errors
10:33:04: Started
13:41:15: Finished
13:41:15: There were 0 errors
The Knowledge Flow GUI

- New graphical user interface for WEKA
- Java-Beans-based interface for setting up and running machine learning experiments
- Data sources, classifiers, etc. are beans and can be connected graphically
- Data “flows” through components: e.g., “data source” -> “filter” -> “classifier” -> “evaluator”
- Layouts can be saved and loaded again later
Weka Knowledge Flow Environment

DataSources

Knowledge Flow Layout

ArffLoader

Status
Done.
Knowledge Flow Layout

ArffLoader

DataSet

DataVisualizer

Status
Done.
Can continue this...
Correctly Classified Instances 144 96 %
Incorrectly Classified Instances 6 4 %
Kappa statistic 0.94
Mean absolute error 0.2311
Root mean squared error 0.288
Relative absolute error 52 %
Root relative squared error 58.704 %
Total Number of Instances 150
Conclusion: try it yourself!

- WEKA is available at

 http://www.cs.waikato.ac.nz/ml/weka

- Also has a list of projects based on WEKA

- WEKA contributors:

 Abdelaziz Mahouii, Alexander K. Seewald, Ashraf M. Kibriya, Bernhard Pfahringer, Brent Martin, Peter Flach, Eibe Frank, Gabi Schmidberger, Ian H. Witten, J. Lindgren, Janice Boughton, Jason Wells, Len Trigg, Lucio de Souza Coelho, Malcolm Ware, Mark Hall, Remco Bouckaert, Richard Kirkby, Shane Butler, Shane Legg, Stuart Inglis, Sylvain Roy, Tony Voyle, Xin Xu, Yong Wang, Zhihai Wang