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In this document, I will attempt to explain in simple terms what monads are, how they
work, and how they are used to perform side effects in the Haskell programming language.
I assume you already have some familiarity with Haskell syntax.

I will start from relatively simple, familiar ideas, and work my way up to our actual goals.
In particular, I will start by discussing functors, then applicative functors, then monads, and
finally how to have side effects in Haskell. I will finish up by discussing the functor and
monad laws, and resources to learn more details.

1 Functors
A functor is basically a data structure that can be mapped over:

class Functor f where
fmap :: (a -> b) -> f a -> f b

This is to say, fmap takes a function that takes an a and returns a b, and a data structure
full of a’s, and it returns a data structure with the same format but with every piece of data
replaced with the result of running it through that function.
Example 1. Lists are functors.

instance Functor [] where
fmap _ [] = []
fmap f (x : xs) = (f x) : (fmap f xs)

We could also have simply made fmap equal to map, but that would hide the implemen-
tation, and this example is supposed to illustrate how it all works.
Example 2. Binary trees are functors.

data BinaryTree t = Empty
| Node t (BinaryTree t) (BinaryTree t)

instance Functor BinaryTree where
fmap _ Empty = Empty
fmap f (Node x left right) = Node (f x) (fmap f left) (fmap f right)
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Note that these are not necessarily binary search trees; the elements in a tree returned
from fmap are not guaranteed to be in sorted order (indeed, they’re not even guaranteed to
hold sortable data). The tree returned from fmap will have shape identical to the one passed
into it, but the values in the returned tree are whatever we get back from the function we’re
mapping.

More complicated (i.e., non-binary) trees are also functors, but they make for a more
complicated example.

2 Applicative Functors
An applicative functor is a bit like a regular, garden-variety functor, except that the function
being mapped onto the data structure needs to be contained in the data structure, too.
They’re found in the Control.Applicative module.

class Applicative f where
pure :: a -> f a
(<*>) :: f (a -> b) -> f a -> f b

The pure function takes a thing and puts it in an applicative functor with the minimal
context (i.e., the simplest version of the applicative functor that can hold the thing). The
<*> operator is just like fmap, except that the functions are held in an applicative functor as
well. Note, though, that this means there may be anywhere from zero to an infinite number
of functions in our data structure!

It’s worth noting that the actual definition of Applicative contains some extra functions
I haven’t mentioned, but they get automatically implemented if we just deal with these two.

Example 3. ZipList is a type defined in the Control.Applicative module. It’s imple-
mented as a list, except that it is defined as an applicative functor in the following way:

data ZipList t = ZipList [t]

instance Applicative ZipList where
pure a = Ziplist (repeat a)
ZipList [] <*> _ = ZipList []
_ <*> ZipList [] = ZipList []
ZipList (f : fs) <*> ZipList (x : xs) =

let
ZipList fxs = ZipList fs <*> ZipList xs

in
ZipList (f x : fs)

In other words, when using <*> on two ZipLists, the first function is applied to the first
value, the second function is applied to the second value, etc.
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The actual definition of ZipList is more concise because it uses zipWith to do the heavy
lifting in <*>. My implementation is longer and more explicit so that it makes a more
illustrative example than the real version does.

Example 4. Recall that Either is a type constructor that takes two types: the first is the
type of an error that it might give, and the second is the type that it contains if there are no
errors. Using partial application, we can make the type constructor Either e that is either
an error of type e or some value of a type not yet specified.

Either e is an applicative functor.

data Either e t = Left e
| Right t

instance Applicative Either e where
pure = Right
Left e <*> _ = Left e
_ <*> Left e = Left e
Right f <*> Right x = Right (f x)

Theorem 1. All applicative functors are also functors.

instance (Applicative a) => Functor a where
fmap f = pure f <*>

From this theorem, we can see that applicative functors are at least as powerful as
functors, since the latter can be implemented using the former.

3 Monads
Finally, we get to monads, which can be found in the Control.Monad module. Here’s what
they look like:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

Like applicative functors, there are several other functions defined in the Monad class that
get implemented automatically, which I have omitted.

The function return is extremely misleadingly named, because it does not work like
return statements in any other language I know of. Instead, it is a function that takes a
thing and puts it in the minimum context to be a monad. You can think of return as being
exactly the same as pure from applicative functors.

The >>= operator (pronounced “bind”) is a bit odd in that its second argument is a
function that knows about the monad it’s used in. Bind takes something encapsulated in
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a monad, and a function that can work on the unencapsulated version of that something
and return its answer wrapped in the same monad. Bind gives back the answer from the
function, after first merging in any extra context from the monad that the first argument
came in.
Example 5. Maybe is a monad.
instance Monad Maybe where
pure = Just
Nothing >>= _ = Nothing
Just x >>= f = f x

Example 6. We could implement a way of accumulating debugging information as a data
structure that keeps a list of strings associated with the data (the list contains the debugging
information about how this data was generated). Such a debugging data structure is a monad.
data Debugger t = Debugger t [String]

instance Monad Debugger where
return a = Debugger a []
Debugger x xDebug >>= f =

let
Debugger y yDebug = f x

in
Debugger y (xDebug ++ yDebug)

This example is inspired by the Writer datatype in the Control.Monad.Trans.Writer mod-
ule, which is also a monad.
Theorem 2. All monads are applicative functors.
instance (Monad m) => Applicative m where
pure = return
fm <*> xm = fm >>= (\f ->

xm >>= (\x ->
return (f x)))

To put the implementation of <*> into English, we open up fm and take out the function(s)
inside it, we open up xm and take out the value(s) inside it, apply the function(s) to the
value(s), and then wrap the whole thing up again in a monad/applicative functor, merging
in any extra data from the monads that contained the values and functions.

We can conclude from this that monads are at least as powerful as applicative functors,
because the latter can be implemented using the former. We can also see that all monads
are functors, because all monads are applicative functors and all applicative functors are
functors.

Historical note: Applicative was added to Haskell long after Monad was. There may be
legacy code that is an instance of Monad but which is not explicitly considered an instance
of Applicative because it was written before Applicative was created.
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4 Side Effects in Haskell
So, how can we use a monad to perform side effects in Haskell? The answer is that we can’t!
However, there is one particular monad, called IO, that has some secret sauce added on top
of it which we can use to get side effects.

Suppose there is a type called World, which contains all the state of the external universe
in it: it’s got a copy of the contents of the hard drive, and a list of keypresses from the
keyboard, and the current contents of the screen buffer, and the Internet connection, and
everything else. Here’s how to think about what IO does:

type IO t = World -> (t, World)

In other words, IO t is a function which takes a World and returns the t it’s supposed
to contain, along with a new, updated World formed by modifying the original one in the
process of getting the t. This isn’t actually how it’s implemented, of course (where would you
store the extra copies of the contents of your hard drive that each of the Worlds contains?),
but it’s a way of thinking about how this all works.

Here’s the monad implementation for our IO:

instance Monad IO where
return x world = (x, world)
(ioX >>= f) world0 =

let
(x, world1) = ioX world0

in
f x world1 -- Has type (t, World)

Because Haskell functions are curried, the return function takes an argument called x
and gives back a function that takes a World and returns x along with the “new, updated”
World formed by not modifying the World it was given.

The implementation of bind is a bit trickier: the expression (ioX >>= f) has type
World -> (t, World). This is to say, it’s a function that takes a World, called world0,
which it uses to extract x from its IO monad. This gets passed to f, resulting in another IO
monad, which again is a function that takes a World and returns a t and a new, updated
World. We give it the World we got back from getting x out of its monad, and the thing it
gives back to us is the t with a final version of the World.

So, okay, this IO appears to act like a monad, and we can see how it can modify the
World it is given and give back an updated one. How does it know which World it’s given
in the first place?

If your program is compiled using GHC, you’ll know that you need to have a main defined
somewhere with type IO (), and this is where program execution starts. This main is given
the initial World to start everything off, and it passes the updated ones from each IO to the
next. If you have an IO that is not reachable from main, it will never be executed, and it
doesn’t get a World passed to it.
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If, instead, you’re using GHCI to run your Haskell commands, everything is wrapped in
an implicit IO, since the results get printed out to the screen. Every time you give it a new
command, it passes in the current World, gets the result of your command back, calls print
on it (which updates the World by modifying the contents of the screen or the list of defined
variables or the list of loaded modules or whatever), and then saves the new World to give
to the next command.

The neat thing about this is that there’s only 1 World in existence at any given moment.
Each IO takes that one and only World, consumes it, and gives back a single new World.
Consequently, there’s no way to accidentally run out of Worlds, or have multiple ones running
around.

5 Extra Details
5.1 Applicative Functor Laws
Applicative functors need to satisfy a few extra laws that Haskell’s type system cannot en-
force on its own:

This: must be equivalent to this:
pure f <*> x fmap f x
pure id <*> x x
pure f <*> pure x pure (f x)
pure ($ x) <*> f f <*> pure x
pure (.) <*> f <*> g <*> x f <*> (g <*> x)

These should not be onerous things; they just ensure that applicative functors behave the
way you intuitively think they should. Note that the first two laws of applicative functors
imply this law of functors:

This: must be equivalent to this:
fmap id x x

5.2 Monad Laws
Like applicative functors, monads have a few laws that Haskell’s type system cannot enforce
but which should hold true anyway:

This: must be equivalent to this:
m >>= return m
return x >>= f f x
(m >>= f) >>= g m >>= (\x -> f x >>= g)
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That last one is a little hard to parse. It’s just saying that functions on monads should
be associative: you can bind m to f and bind the result of that to g, and what you get back
will be equivalent to binding m to a function that binds the result of f to g.

Again, these are not supposed to be a burden on the programmer; they’re just there to
make sure that things that claim to be monads act in somewhat intuitive ways.

6 Works Consulted
This was intended to be just a cursory introduction to monads and side effects in Haskell.
This information has been distilled from other, more thorough sources, and if you’re inter-
ested in learning more, I encourage you to take a look at them.

The vast majority of this information is taken from Learn You A Haskell For Great
Good, which can be found at http://LearnYouAHaskell.com. It’s a book, and you can
read it online for free or purchase a physical copy. The information here has been taken from
chapters 8, 11, 12, and 13.

The discussion of side effects was taken from the Haskell Wiki, at http://haskell.org/
haskellwiki/IO_inside.
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