
Grouping Strokes into Shapes in Hand-Drawn Diagrams

Eric J. Peterson and Thomas F. Stahovich
Mechanical Engineering Department

University of California
Riverside, California 92521

epeterson@engr.ucr.edu, stahov@engr.ucr.edu

Eric Doi and Christine Alvarado
Computer Science Department

Harvey Mudd College
Claremont, California 91711

eric doi@hmc.edu, alvarado@cs.hmc.edu

Abstract

Objects in freely-drawn sketches often have no spatial or
temporal separation, making object recognition difficult. We
present a two-step stroke-grouping algorithm that first classi-
fies individual strokes according to the type of object to which
they belong, then groups strokes with like classifications into
clusters representing individual objects. The first step facili-
tates clustering by naturally separating the strokes, and both
steps fluidly integrate spatial and temporal information. Our
approach to grouping is unique in its formulation as an effi-
cient classification task rather than, for example, an expen-
sive search task. Our single-stroke classifier performs at least
as well as existing single-stroke classifiers on text vs. non-
text classification, and we present the first three-way single-
stroke classification results. Our stroke grouping results are
the first reported of their kind; our grouping algorithm cor-
rectly groups between 86% and 91% of the ink in diagrams
from two domains, with between 69% and 79% of shapes be-
ing perfectly clustered.

Introduction
One of the most difficult challenges in sketch understand-
ing is clustering the strokes into distinct objects. Often there
are no clear spatial or temporal boundaries between the ob-
jects in a freely-drawn sketch, and the primary clue that a
group of strokes is supposed to be grouped together is that
they form a meaningful shape. This is the inherent chicken-
and-egg problem for sketch recognition — shapes cannot be
recognized until their strokes have been grouped together,
but the strokes cannot be grouped until the shapes have been
recognized.

The clustering problem is so challenging that many ex-
isting recognition systems avoid it by placing constraints
on the way users draw. For example, some systems re-
quire the user to provide explicit cues, such as button clicks
or pauses, to demarcate each object (e.g., (Hse and New-
ton 2005)); others require each symbol to be drawn with a
single stroke (e.g., (Rubine 1991)) or a temporally contigu-
ous sequence of strokes (e.g., (Gennari, Kara, and Stahovich
2005)). While these constraints aid recognition, they do not
generally match the way people naturally draw (Alvarado
and Lazzareschi 2007).

Copyright © 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: (a) A digital logic sketch. (b) The strokes in the
sketch that are classified as gates.

To solve the problem of simultaneous grouping and recog-
nition, Kara et al.’s (2004) mark-group-recognize technique
relies on “marker symbols” — symbols that can be accu-
rately and inexpensively extracted from a continuous stream
of pen strokes, and that tend to separate the remaining sym-
bols. While this approach is efficient, it is limited to domains
that have effective markers.

Other recent work has focused on the problem of single-
stroke classification. Qi et al. (2005) present a method for
using conditional random fields to classify strokes in orga-
nizational chart diagrams as either connectors or boxes. Ad-
dressing a similar problem, Bishop et al. (2004), Patel et
al. (2007), and Bhat and Hammond (2009) present methods
that integrate shape and temporal information for classifying
individual strokes as either text or drawing strokes. Wang et
al. (2007) improve on Bishop et al.’s method.

The goal of most previous single-stroke classification
techniques is to identify the text strokes so they can be
sent to a character recognizer, while the shape strokes (i.e.,
strokes comprising graphic objects) are left ungrouped. Our
approach goes further, grouping the shape strokes as well.
We aim to achieve accurate grouping in domains for which
marker symbols do not exist and single-stroke classification
is more involved. We present a two-stage clustering algo-
rithm that first classifies pen strokes into different classes of
objects, and then groups strokes with like classifications into
clusters representing individual objects. Figure 1 illustrates
our approach. In the first step of processing (Figure 1a),
individual strokes are classified as belonging to text, gate,
or wire objects. This classification spatially and temporally
separates individual objects of the same class — as in Fig-
ure 1b, which shows only strokes classified as gates — mak-

974

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)



ing the strokes easier to cluster.
Our work makes two significant contributions over previ-

ous approaches to stroke-level classification and grouping.
First, while previous approaches were applied to only two-
way classification (usually text vs. non-text), our approach is
highly accurate on three-way classification of text and two
different types of graphics. In addition, our two-way classi-
fication accuracy is as good as the best previously reported
results. Second, the separation between objects that results
from our single-stroke classification technique enables our
novel formulation of the grouping problem as an inexpen-
sive classification task.

Related Work
In addition to the work described above, a growing body
of free-sketch recognition research involves simultaneous
stroke grouping and symbol recognition. Some group-
ing techniques rely directly on geometric properties of the
strokes. For example, Saund et al. (2003) decompose a
sketch into sequences of contiguous line segments corre-
sponding to line art, and “blobs” of dense ink correspond-
ing to text. They use Gestalt principles to group these ob-
jects into larger structures. The approach is computationally
expensive for dense diagrams, and is intended to produce
groupings suitable for interactive manipulation rather than
object recognition.

Other techniques tightly integrate the process of stroke
grouping and symbol recognition by searching over all pos-
sible stroke clusterings, using the results of recognition to
guide the search. Shilman and Viola (2004) use A* search
to generate candidate groupings and then evaluate them with
a recognizer to distinguish valid objects from meaningless
combinations of pen strokes. In earlier work, Shilman et
al. (2002) use a manually-coded visual grammar to guide
the search for stroke clusterings, while Alvarado and Davis
(2005) use the probabilities produced by dynamically con-
structed Bayesian networks.

All of the above search-based approaches rely on recog-
nition to help prune the exponential space of possible group-
ings, and none scale well to complex drawings, especially if
the search gets “off track” early in the process.

Approach
Our approach consists of two steps: (1) classifying single
strokes into two or more different classes and (2) clustering
strokes of the same class into individual objects.

Single-Stroke Classification
Our goal at this stage is to classify strokes into general cat-
egories to facilitate stroke grouping. We use a feature-based
machine-learning approach with a standard classification al-
gorithm and a feature set that extends the set presented in
Patel et al. (2007).

Our classifier uses AdaBoost with decision trees and is
trained using WEKA (Hall et al. 2009). Specifically the
classifier is AdaBoostM1 using 10 iterations, a seed of 1, no
resampling, and a weight threshold of 100. The base classi-
fier is a pruned c4.5 decision tree using a confidence value
of 0.25, and the minimum number of instances in a leaf is

2. AdaBoost was chosen because it performed better than
other methods that were tested, namely multi-layer percep-
trons and c4.5 decision trees.

The main contribution of this paper is not any specific
feature, rather our complete stroke- classification/stroke-
grouping approach. However, we find that the specific com-
bination of features we used outperforms previous systems
(e.g., (Patel et al. 2007)) so we present our entire feature set
here for completeness.

Each pen stroke is captured as a series of sampled points
containing position and time information, from pen-down to
pen-up. For classification we extract 27 features that char-
acterize the stroke’s size and location, its shape, the drawing
kinematics, and the relationships between it and the other
strokes in the sketch.

Both the shape of a stroke and the context in which it ap-
pears are critical to classification. For example, in digital-
circuit sketches small curved strokes are not likely to be
wires, but a straight stroke might be part of a wire or the
back of an ‘AND’ gate, depending on context. To incorpo-
rate both shape and context, our features represent both the
intrinsic properties of the stroke (e.g., length and curvature),
and its relationships with the surrounding strokes (e.g., in-
tersections and temporal gaps).

The first important property of a stroke is its size, which
is represented by four features. Bounding Box Width, Height
and Area are properties of the minimum, coordinate-aligned
bounding box of the stroke, while Arc Length is the total
length of the stroke measured as a sum of the distance be-
tween consecutive points. These features are normalized by
their average values in the sketch, allowing the classifier to
learn the importance of relative stroke size in classification.

One insight not captured by the features in (Patel et al.
2007) is that, in many domains, particular kinds of objects
often appear in preferred locations on the drawing canvas
(defined here as the bounding box of the entire sketch). For
example, diagrams may be drawn in the center of the canvas,
with text near the periphery. This phenomenon is captured
by two positional features. Distance to Left/Right is the min-
imum distance between the stroke and the closer of the left
or right edge of the canvas, divided by the width of the can-
vas. Distance to Top/Bottom, which is the location relative
to the top or bottom of the canvas, is defined analogously.

Eight features describe the shape of a stroke. The first
three describe its topological properties. EndPtRatio mea-
sures the degree to which the stroke forms a closed path. It
is defined as the Euclidean distance between the endpoints
of the stroke divided by the arc length. Self Enclosing is a
binary form of the EndPtRatio. If EndPtRatio is less than a
threshold, T (we use a value of 0.15), the value of Self En-
closing is one, otherwise it is zero. Self Intersections is the
number of times the stroke intersects itself.

The next four features describe the stroke’s curvature. The
curvature, θi, at point i is defined as the angle between the
segment connecting point i − 1 to point i, and the segment
connecting point i to point i+ 1.The four curvature features
are obtained by summing various functions of the curvature
at each point along the stroke. Sum of the (signed) Curvature
represents the total turning angle of the stroke, where turns

975



in one direction cancel turns in the other. Sum of the Abso-
lute Value of the Curvature provides a measure of how much
the curve “wiggles,” or deviates from a straight line. Sum of
the Squared Curvature emphasizes corners, or points of high
curvature. Conversely, Sum of the Square Root of Curvature
emphasizes points of low curvature. The first three of these
are from (Rubine 1991), while the last is of our own design.

Finally, Ink Density measures the compactness of the
stroke. In previous work this was particularly useful in
helping to distinguish wires from components in analog cir-
cuits (Gennari, Kara, and Stahovich 2005). It is defined as
the ratio of the square of the arc length to the area of the
minimum coordinate-aligned bounding box. Arc length is
squared so that it scales in the same way as bounding box
area.

Pen speed can provide important information about the
classification of a stroke. For example, people might draw
text strokes faster than diagram strokes, or wires faster than
gates. The drawing kinematics are represented in terms of
four speed-based features: the Average Pen Speed, the Max-
imum and Minimum instantaneous pen speeds, and the Dif-
ference Between Maximum and Minimum instantaneous pen
speeds. Pen speed is near zero at the two endpoints of a
stroke, so when computing the minimum, a few points at
each end are ignored. Each speed-based feature value is nor-
malized by the average stroke speed in the sketch. The final
kinematic feature is the Time to Draw the stroke.

The remainder of the features characterize the geometric
and temporal relationships the stroke has with other strokes
in the sketch. The first four of these measure the number
of different types of intersections the stroke has with other
strokes: endpoint-to-endpoint (‘LL’s), midpoint-to-midpoint
(‘XX’s), midpoint-to-endpoint (‘XL’s), and endpoint-to-
midpoint (‘LX’s). We have found that this distinction
between intersections involving endpoints and midpoints,
which is not reported elsewhere in the literature, is impor-
tant for accurate stroke classification. We use a distance tol-
erance to catch cases where strokes nearly intersect. In ef-
fect, the strokes are extended at each end by a small amount.
A simple linear tolerance is too generous for long strokes,
and too tight for short ones. Instead, our tolerance is derived
from the sketch average arc length, Lavg , as follows:

Ltol = min(Lavg,
Li + Lavg

2
) ∗ T (1)

where Li is the arc length of the stroke to be extended and
T is the same threshold used for computing SelfEnclosing
(a value of 0.15 works well in practice). This formula pro-
duces a proportionally larger tolerance for short strokes, and
a proportionally smaller tolerance for long ones. Before ex-
tending a stroke, the small “hooks” at the endpoints are re-
moved, using the algorithm described in (LaViola 2005), so
that the direction at the endpoints is meaningful. If the inter-
section point lies within distance Ltol of the actual endpoint
of the stroke, it is considered an endpoint intersection. Oth-
erwise, it is considered a midpoint intersection. The case
in which two extended strokes do not actually intersect, but
their endpoints are within a distance Ltol of one another, is
still considered an endpoint intersection.

Figure 2: Features used by clustering classifier.

Our feature set includes two novel features that character-
ize higher-level geometric relationships. The binary Closed
Path feature indicates whether or not the stroke belongs to
some set of strokes that connect to each other via ‘LL’ in-
tersections to form a closed path. The binary Inside Path
feature indicates whether or not the stroke is inside the mini-
mum coordinate-aligned bounding box of some closed path.
Using a bounding box to test for Inside Path can result in
false positives, but is inexpensive and has worked adequately
for our purposes.

The final two features for single-stroke classification cap-
ture temporal relationships. Time to Previous is the elapsed
time between the end of the previous stroke and the start of
the current one. Time to Next is defined analogously.

Stroke Grouping
Classifying the individual pen strokes reduces the complex-
ity of stroke grouping by decomposing the problem into
smaller, easier problems, one for each class. However, even
for the strokes in a single class, brute force grouping tech-
niques, such as attempting to recognize all combinations of
strokes, are still too expensive for interactive systems. In-
stead, we use a classifier to determine if each pair of strokes
of the same class should be joined to form a cluster. If a
stroke is joined with another stroke that is already part of a
cluster, all of those strokes become a single cluster. We con-
sider two different classification methods for stroke joining,
one based on simple thresholds, the other based on induc-
tive learning techniques. Both methods cluster strokes well
when used in conjunction with our single-stroke classifica-
tion step.

Our threshold grouping classifier joins two strokes if the
minimum distance between them (dmin in Figure 2) is less
than TJD and the elapsed time between them is less than
TJT . We obtained suitable values for these thresholds via a
user-holdout parameter search. For digital circuits, the best
value of TJD is 200 himetric units, and the best value of TJT

ranged from 7.0 to 10.0 sec. For family trees the best values
of TJD and TJT are 10 pixels (about 240 himetric units) and
1.5 sec.

Our more sophisticated grouping classifier uses AdaBoost
with decision trees, with the same learning parameters used
for single-stroke classification. Here, pairs of strokes are
classified into three categories: “don’t join,” “far join,” and
“near join.” ”Don’t join” describes a pair of strokes that

976



belong to different clusters. “Far join” describes pairs that
belong to the same cluster, but are sufficiently far apart that
they are connected via intermediate strokes via “chaining”.
“Near join” describes the remaining pairs of strokes that be-
long in the same cluster. For example, if a circle were added
to the right side of the AND gate in Figure 2 to form a
NAND gate, the back side of the gate and the circle would
be a far join, while the back and front sides of the gate, as
well as the front side and the circle would be near joins. The
distinction between near and far joins helps the program dis-
tinguish between distant strokes within a single cluster and
strokes that are distant because they belong to different clus-
ters, thereby resulting in substantially higher grouping accu-
racy.

When training the grouping classifier, a pair of strokes
from a cluster is labeled as a near join if the minimum dis-
tance (dmin) between them is less than the near join thresh-
old:

dNJ = max{TJD, (1+T )∗max{SMDA, SMDB}} (2)

where TJD is the distance threshold used with the thresh-
old grouping classifier and T is the threshold for comput-
ing stroke intersections. SMDA and SMDB are the Shape
Minimum Distance for the first and second stroke of the
pair, respectively, defined as the minimum distance from that
stroke to any other stroke in the cluster.

The 13 features used by our more sophisticated grouping
classifier include one temporal feature and 12 spatial fea-
tures, five of which are illustrated in Figure 2. The temporal
feature is the time delay between the two strokes. The spa-
tial features measure various distances between the strokes.
X-overlap and Y-overlap are the length of the intersection
between the projections of the two strokes onto the x-axis
and y-axis, respectively. Their values are negative if the
projections do not intersect. dmax and dmin are the maxi-
mum and minimum distances, respectively, between the two
strokes. dminLL is the minimum distance between an end-
point of one stroke and an endpoint of the other. dminXL

is the minimum distance between an endpoint of one stroke
and any point of the other. dcentroid is the distance between
the centroids of the strokes.
ClosenessA and ClosenessB compare the distance be-

tween the strokes to the distances between them and their
nearest neighbors of the same class. If A is the minimum
distance between the first stroke of the pair and any other
stroke of the same class and B is the analogous distance for
the second stroke in the pair, ClosenessA is computed as:

ClosenessA =
A+ k

dmin + k
(3)

where k is a constant offset to avoid division by zero,
and ClosenessB is computed analogously. RatioLL and
RatioXL give an indication of whether or not the strokes
are closest to each other at their endpoints. For example,
RatioLL is the ratio of the minimum distance between the
strokes and the minimum distance between the stroke’s end-
points:

RatioLL =
dmin + k

dminLL + k
(4)

Figure 3: (A) Complex circuit diagram. (B) Simple family
tree (FT) diagram. (C) Complex FT diagram.

where k is again a constant offset. RatioXL is computed
analogously.

Computing these pairwise features is an O(n2) process.
However, the features are computed incrementally as each
new stroke is drawn. Typically the features are computed
far faster than the rate of drawing.

Data Sets
We tested both our single-stroke and clustering classifiers
on freely-drawn sketches in two different domains: digi-
tal circuits and family trees. We collected 8 digital circuit
sketches from each of 24 students at the University of Cal-
ifornia, Riverside and Harvey Mudd College for a total of
192 sketches. Half of these were copied from a picture
of a circuit, while the rest were synthesized from a logi-
cal equation. Half of the sketches were drawn on a Tablet
PC while the other half were drawn using a digitizing pen
on paper. We balanced the order of the copy and synthesize
tasks across users. Our family tree data is from the EtchaS-
ketches corpus1, consisting of a total of 27 sketches from 9
users, all drawn on a Tablet PC (sketches containing fewer
than 5 strokes, or those which are subsets of other sketches,
were not used). In all cases, users drew freely and received
no recognition feedback.

Figures 1 and 3 show some simple and complex digital-
circuit and family tree diagrams from the data. On average,
each circuit sketch contains 51 strokes (median of 49) and
each family tree sketch contains 61 strokes (median of 38).
The distribution of strokes across all of the circuit diagrams
is 42% wire, 14% text, and 44% gate. For family tree di-
agrams, the distribution is 37% link (lines or arrows), 37%
text, and 26% people (boxes or ellipses).

Results
All results in the following section were obtained using user-
holdout-out-cross-validation. The final accuracy is averaged
across all users.

In order to compare our single-stroke classification
method to existing techniques we performed two-way clas-
sification of text vs. non-text. We then compared the per-

1http://rationale.csail.mit.edu/ETCHASketches/

977



Class Classified As
Text NonText Accuracy

D
ig

ita
lC

ir
cu

its
Actual
- Ours

Text 1255 142 89.8%
NonText 133 8272 98.4%

TOTAL 97.2%
Actual
- MS

Text 963 434 68.9%
NonText 3152 5253 62.5%

TOTAL 63.4%
Actual
- Ent.

Text 0 1397 0.0%
NonText 0 8405 85.8%

TOTAL 85.8%

Fa
m

ily
Tr

ee
s

Actual
- Ours

Text 576 66 89.7%
NonText 97 921 90.5%

TOTAL 90.2%
Actual
- MS

Text 617 0 100.0%
NonText 410 633 60.7%

TOTAL 75.3%
Actual
- Ent.

Text 505 112 81.8%
NonText 36 1007 96.5%

TOTAL 91.1%

Table 1: Results of text vs. NonText. MS = Microsoft’s Ink-
Analyzer, Ent. = Entropy method.

D
ig

.C
ir

cu
its Class Classified As

Gate Text Wire Accuracy

A
ct

ua
l Gate 3977 119 180 93.0%

Text 97 1289 11 92.3%
Wire 160 24 3945 95.5%

TOTAL 94.0%

Fa
m

.T
re

es Class Classified As
People Text Link Accuracy

A
ct

ua
l People 333 30 44 81.8%

Text 22 577 43 89.9%
Link 22 56 533 87.2%

TOTAL 86.9%

Table 2: Results of three-way, single-stroke classification.

formance of our technique to that of a recent technique by
Bhat et al. (2009), and Microsoft’s InkAnalyzer — a state-
of-the-art commercial algorithm. In the digital-circuit do-
main, our method achieved an overall accuracy of 97.2%,
while the InkAnalyzer’s accuracy was 63.4% and Bhat’s en-
tropy method reverted to a naive classifier which classified
all strokes as non-text for an accuracy of 85.8%. For the
family tree diagrams, our method achieved 90.2% accuracy,
while InkAnalyzer achieved 75.3%, and the entropy method
achieved 91.1%. A list of all results for two-way classifica-
tion can be found in Table 1.

We also evaluated the performance of our single-stroke
classifier on three-way classification. For the digital-circuit
data the classifier achieved 94.0% accuracy, and for the fam-
ily tree data it achieved 87.5% accuracy. The complete re-
sults are presented in Table 2.

We use two metrics to measure the accuracy of our group-
ing method. The first measure is the percentage of the clus-
ter’s ink (by arc length) that was correctly grouped, as well
as the percentage of ink that was erroneously added to the
cluster (i.e., extra strokes). These are computed on a per

Dig Circ Ink: Avg / Shape Shapes: X Errors or Less
Class Correct Extra 0 1 2
Gate 90.6% 6.2% 72.9% 92.5% 97.1%
Text 94.2% 4.1% 86.4% 97.5% 99.5%
Wire 79.6% 10.1% 59.3% 81.8% 89.8%

Overall 86.3% 7.6% 69.2% 88.6% 94.2%
Fam Tree Ink: Avg / Shape Shapes: X Errors or Less

Class Correct Extra 0 1 2
People 93.3% 2.1% 84.3% 94.2% 99.0%
Text 80.7% 0.2% 55.8% 75.8% 85.8%
Link 79.1% 18.0% 58.1% 86.7% 97.4%

Overall 84.5% 9.5% 67.4% 87.8% 96.2%

Table 3: Thresholded grouping classifier.

cluster basis, and then averaged across all shapes. These
accuracy results are listed in the second and third columns
of Tables 3 and 4. The second measure of accuracy is the
percentage of clusters that have no more than a given num-
ber (X) of erroneous strokes; these results are listed in the
last three columns of Tables 3 and 4. Consider, for example,
a shape comprised of three strokes, A, B, and C, with arc
lengths of 100, 200, and 300 pixels, respectively. If strokes
B and C are grouped, but A is left out, and an additional
stroke D (with length 150 pixels) is erroneously grouped
with the cluster, the accuracies for this shape would be:
83.3% ink found, 25.0% extra ink, two errors – one miss-
ing and one extra stroke.

Table 3 presents the grouping results for our simple
grouping classifier that uses the TJD and TJT thresholds.
This classifier accurately groups shapes that have sufficient
separation, however it performs poorly when the shapes
overlap (e.g., wires). The overall accuracies for digital cir-
cuits with this approach are 86.3% ink found, 7.6% extra
ink, and 69.8% of shapes grouped with zero errors. For fam-
ily tree diagrams the accuracies are 84.5% ink found, 9.5%
extra ink, 67.4% of shapes grouped with zero errors.

The results for our more sophisticated grouping classifier
are presented in Table 4. Compared to the simple grouping
classifier, this classifier gives slightly better results for gate
and label shapes in digital-circuit sketches, and performs
much better on wires. The overall accuracies for digital-
circuits are 91.4% ink found, 5.3% extra ink, and 79.5% per-
fect clusters. The overall accuracy for family tree diagrams
is 86.0% ink found, 7.7% extra ink, and 69.6% perfect clus-
ters.

To test the effectiveness of the more sophisticated group-
ing classifier isolated from the errors of the single-stroke
classifier, we tested the grouper using the correct class for
each stroke. The accuracy for digital circuits increased to
96.7% ink found, 1.7% extra ink, and 93.3% of the shapes
perfectly grouped. For the family tree domain the accura-
cies are 94.3% ink found, 4.3% extra ink, 88.1% of shapes
perfectly grouped.

Discussion
Our single-stroke classification technique for text vs. non-
text performed as well as or better than previous methods.
In direct comparison to the entropy method described in
(Bhat and Hammond 2009) and the commercial classifier

978



Dig Circ Ink: Avg / Shape Shapes: X Errors or Less
Class Correct Extra 0 1 2
Gate 91.0% 4.5% 76.7% 93.2% 98.2%
Text 94.5% 6.7% 84.0% 96.7% 99.3%
Wire 90.5% 5.4% 79.9% 89.8% 94.2%

Overall 91.4% 5.3% 79.5% 92.3% 96.6%
Fam Tree Ink: Avg / Shape Shapes: X Errors or Less

Class Correct Extra 0 1 2
People 89.8% 3.3% 80.9% 93.5% 97.6%
Text 80.9% 9.9% 50.5% 69.2% 78.5%
Link 85.2% 9.2% 68.5% 90.4% 99.0%

Overall 86.0% 7.7% 69.6% 88.5% 95.5%

Table 4: More sophisticated grouping classifier.

used by Microsoft’s InkAnalyzer, our classifier performed
significantly better in the digital-circuit domain, while the
entropy method provided slightly better results in the family-
tree domain. We also report higher accuracy than Patel et
al.’s (2007) approximately 70% accuracy, and similar accu-
racy to Bishop et al.’s (2004) approximately 95% accuracy,
and Qi et al.’s (2005) approximately 96% accuracy. Addi-
tionally, we report the first results for three-way classifica-
tion of strokes, a task for which our approach achieved high
accuracy.

The separation created by our single-stroke classifier al-
lows even simple grouping methods to effectively cluster
shapes. Using our more sophisticated grouping algorithm
improves grouping accuracy in most cases, particularly for
shapes with complex interactions, such as wires which can
intersect one another. While most previous grouping tech-
niques rely on search and recognition, we use classification
of pairs of strokes along with chaining of pairs to form com-
plete shapes.

Our method is domain-flexible, and can be applied to
a new domain without additional coding. Applying our
method to a new domain simply requires examples of each
class of pen stroke to train the single-stroke classifier, and
examples of each kind of grouping pair (don’t join, near join,
and far join) to train the grouping classifier. We have demon-
strated our method in two distinct domains, digital circuits
and family trees. The approach did worse for the latter do-
main, but this is likely due to a lack of training data: there
are only 27 family tree diagrams compared with 192 circuit
sketches. Another possibility is the difference in complexity
between domains. Many of the family-tree sketches had sig-
nificantly more strokes and looked “messier” than the digital
circuits; see Figure 3 for examples.

While we have a total of 27 features for single-stroke
classification, we can achieve accuracy that is only a few
percentage points worse by using just four features: Closed
Path, Bounding Box Width, Distance to Left/Right, and Sum
of (signed) Curvature. These features were identified us-
ing WEKA’s attribute selection functionality on the data for
three-way classification of digital-circuit sketches. This in-
dicates that much of the information necessary for classifi-
cation is contained in a small subset of the features, but all
of the features are needed to achieve maximum accuracy.

Conclusion
Grouping strokes in freely-drawn sketches is so challeng-
ing that few recognition systems attempt it. Our work is a
significant step toward solving this important problem. We
have shown that separating pen strokes into different classes
can make the grouping process much easier and more effec-
tive. The separation is achieved by an accurate three-way
single-stroke classifier, the first of its kind reported. Further
we have demonstrated a new and efficient method for group-
ing. The method is novel in that it is based on classification
rather than search.

Acknowledgements
This material is based upon work supported by the National
Science Foundation under Grant Nos. 0729422 & 0735695.

References
Alvarado, C., and Davis, R. 2005. Dynamically constructed
Bayes nets for multi-domain sketch understanding. In Proc.
IJCAI.
Alvarado, C., and Lazzareschi, M. 2007. Properties of real-
world digital logic diagrams. In Proc. of PLT, 12.
Bhat, A., and Hammond, T. 2009. Using entropy to identify
shape and text in hand-drawn diagrams. In IJCAI.
Bishop, C. M.; Svensen, M.; and Hinton, G. E. 2004. Dis-
tinguishing text from graphics in on-line handwritten ink. In
Proc. of the Int. Workshop on FHR, 142–147.
Gennari, L.; Kara, L. B.; and Stahovich, T. F. 2005. Com-
bining geometry and domain knowledge to interpret hand-
drawn diagrams. Computers and Graphics 29(4).
Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
An update. SIGKDD Explor. Newsl. 11(1).
Hse, H., and Newton, A. R. 2005. Recognition and beauti-
fication of multi-stroke symbols in digital ink. C&G 29(4).
Kara, L. B., and Stahovich, T. F. 2004. Hierarchical parsing
and recognition of hand-sketched diagrams. In UIST.
LaViola, J. J. 2005. Mathematical sketching: A new
approach to creating and exploring dynamic illustrations.
Ph.D. Dissertation, Brown University.
Patel, R.; Plimmer, B.; Grundy, J.; and Ihaka, R. 2007. Ink
features for diagram recognition. In Proc. of SBIM.
Qi, Y.; Szummer, M.; and Minka, T. P. 2005. Diagram
structure recognition by bayesian conditional random fields.
In Proc. of CVPR.
Rubine, D. 1991. Specifying gestures by example. Com-
puter Graphics 25:329–337.
Saund, E., and Lank, E. 2003. Stylus input and editing
without prior selection of mode. In Proc. of UIST.
Shilman, M., and Viola, P. 2004. Spatial recognition and
grouping of text and graphics. In Proc. of SBIM.
Shilman, M.; Pasula, H.; Russell, S.; and Newton, R. 2002.
Statistical visual language models for ink parsing. In AAAI
Spring Symposium on Sketch Understanding.
Wang, X.; Biswas, M.; and Raghupathy, S. 2007. Address-
ing class distribution issues of the drawing vs. writing clas-
sification in an ink stroke sequence. In Proc. of SBIM.

979




