
CPU vs. GPU

Arthi Padmanabhan
Feb 22, 2023

CS 181AI
Lecture 11



Logistics

• Assignment 3 due Friday
• No formal office hours today but my door will be open this afternoon from 2 -

4



Last Time

• Finished Synchronization
• Monitors & conditional variables



Today

• GPUs!

Machine Learning! Parallel Code!



CPU architecture

• CPU is designed to perform a large variety of tasks

Core

Cache

Memory



CPU architecture

• CPU is designed to perform a large variety of tasks

Cache

Memory

Control 
Unit ALU Registers



01010101010110101011010101010110101010101000110101010110101011010101010101101010101010100101010101011010101101010101011010101010100011010101011010101101010101010110101010101010

CPU Threads

• A CPU core can only process one instruction at any given time

CPUCPU



CPU Threads

• CPU cores only process one instruction at any given time
• Can have multiple threads though

01010101010110101011010101010110101010101000110101010110101011010101010101101010101010100101010101011010101101010101011010101010100011010101011010101101010101010110101010101010

01010101010110101011010101010110101010101000110101010110101011010101010101101010101010100101010101011010101101010101011010101010100011010101011010101101010101010110101010101010
CPU



CPU Threads

• CPU cores only process one instruction at any given time
• Can have multiple threads though
• Threads within a CPU core can run concurrently (not in parallel)
• So nothing can happen in parallel on a CPU?

01010101010110101011010101010110101010101000110101010110101011010101010101101010101010100101010101011010101101010101011010101010100011010101011010101101010101010110101010101010

01010101010110101011010101010110101010101000110101010110101011010101010101101010101010100101010101011010101101010101011010101010100011010101011010101101010101010110101010101010
CPU



Multi-core CPU

• CPUs can have multiple cores, and cores can run in parallel

Cache

Memory

Core



Multi-core CPU
• CPUs can have multiple cores, and cores can run in parallel

L1 Cache

Memory

Core Core Core Core

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L3 Cache



Multi-core CPU
• CPUs can have multiple cores, and cores can run in parallel

L1 Cache

Memory

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L3 Cache

Cont
rol 

Unit
ALU Regis

ters

Cont
rol 

Unit
ALU Regis

ters

Cont
rol 

Unit
ALU Regis

ters

Cont
rol 

Unit
ALU Regis

ters



Gaming Applications

• Needed a lot of arithmetic for advanced fast rendering



3D Object Rendering

• 3D objects broken up into polygons, 
usually triangles
• Coordinates stored as vectors
• Most of the mathematical operations 

involve geometry
• Moving, rotating, resizing, ray tracing, etc



Multi-core CPU
• CPUs started shipping with a graphics card

L1 Cache

Memory

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L1 Cache

L2 Cache

L3 Cache

Graphics

Cont
rol 

Unit
ALU Regis

ters

Cont
rol 

Unit
ALU Regis

ters

Cont
rol 

Unit
ALU Regis

ters

Cont
rol 

Unit
ALU Regis

ters



Graphics Card

• Specifically designed to handle graphics processing



Graphics Card

• Has its own memory (VRAM), typically 8-10GB
• Has spot for cooling fan (can be noisy!)
• Often has external power supply (through CPU isn’t enough)



CPU Connects to GPU

• Must connect to CPU through PCIe bus
• Programmer must move data between DRAM and VRAM

CPU

CPU Memory (DRAM)

GPU

GPU Memory (VRAM)

CPU
bandwidth:
60-100 GB/s

GPU 
bandwidth:
150-300 
GB/s

PCIe bus: 6-12 GB/s



Graphics Card

• Most important part: Graphical Processing Unit
• Often the whole card is referred to as the GPU



GPU Architecture

• Hundreds or thousands of ALUs, each working on its share of millions 
of data streams being processed in parallel

ALU



GPU Architecture

• Many ALUs execute the same instruction on different parts of data
• These can share a control unit

SIMD: single 
instruction, 
multiple data 
paradigm

Control 
Unit



GPU Architecture

• This group also shares cache, though there is also shared cache and 
shared memory across all ALUs

L2 Cache

L1 
Cache

GPU Memory



Why not always use GPU?

• CPU can handle many types of tasks
• Spreadsheets, skype calls, music, etc

• GPU can do one thing very well

CPU GPU



When should you use GPU?

• Because it has so many ALUs that can be coordinated to each take a 
subset of the data, GPU is very good for ”embarrassingly parallel” 
tasks
• GPU: lower latency, very high bandwidth

CPU GPU



Next Time

• How do the ALUs in a GPU parallelize an embarrassingly parallel task 
like machine learning (aka matrix multiplication)?
• How do we as programmers: 1. Write code for the host and code for 

the device 2. Run device code from the host 3. Use device memory 
(transfer data between host and device)?


