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Logistics

• Assignment 3 due Friday
• No formal office hours today but my door will be open this afternoon from 2 -

4



Last Time

• Finished Synchronization
• Monitors & conditional variables



Today

• GPUs!

Machine Learning! Parallel Code!



CPU architecture

• CPU is designed to perform a large variety of tasks
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CPU Threads

• A CPU core can only process one instruction at any given time

CPUCPU



CPU Threads

• CPU cores only process one instruction at any given time
• Can have multiple threads though
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CPU Threads

• CPU cores only process one instruction at any given time
• Can have multiple threads though
• Threads within a CPU core can run concurrently (not in parallel)
• So nothing can happen in parallel on a CPU?
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Multi-core CPU

• CPUs can have multiple cores, and cores can run in parallel
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Multi-core CPU
• CPUs can have multiple cores, and cores can run in parallel
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Gaming Applications

• Needed a lot of arithmetic for advanced fast rendering



3D Object Rendering

• 3D objects broken up into polygons, 
usually triangles
• Coordinates stored as vectors
• Most of the mathematical operations 

involve geometry
• Moving, rotating, resizing, ray tracing, etc



Multi-core CPU
• CPUs started shipping with a graphics card
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Graphics Card

• Specifically designed to handle graphics processing



Graphics Card

• Has its own memory (VRAM), typically 8-10GB
• Has spot for cooling fan (can be noisy!)
• Often has external power supply (through CPU isn’t enough)



CPU Connects to GPU

• Must connect to CPU through PCIe bus
• Programmer must move data between DRAM and VRAM
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Graphics Card

• Most important part: Graphical Processing Unit
• Often the whole card is referred to as the GPU



GPU Architecture

• Hundreds or thousands of ALUs, each working on its share of millions 
of data streams being processed in parallel

ALU



GPU Architecture

• Many ALUs execute the same instruction on different parts of data
• These can share a control unit

SIMD: single 
instruction, 
multiple data 
paradigm

Control 
Unit



GPU Architecture

• This group also shares cache, though there is also shared cache and 
shared memory across all ALUs
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Why not always use GPU?

• CPU can handle many types of tasks
• Spreadsheets, skype calls, music, etc

• GPU can do one thing very well
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When should you use GPU?

• Because it has so many ALUs that can be coordinated to each take a 
subset of the data, GPU is very good for ”embarrassingly parallel” 
tasks
• GPU: lower latency, very high bandwidth

CPU GPU



Next Time

• How do the ALUs in a GPU parallelize an embarrassingly parallel task 
like machine learning (aka matrix multiplication)?
• How do we as programmers: 1. Write code for the host and code for 

the device 2. Run device code from the host 3. Use device memory 
(transfer data between host and device)?


