
GPU Programming Pt. 1

Arthi Padmanabhan
Feb 27, 2023

CS 181AI
Lecture 12



Last Time

• Review of CPU architecture
• GPU architecture
• GPUs consists of hundreds or thousands of ALUs
• ALUs are divided into groups, and a whole group follows the same 

instruction but each on a different section of the data (Single-
Instruction, Multiple Data)



Important Concepts

• What is PCIe bus? Is it fast or slow?
• When you write code for the GPU, do you initialize your data, model, 

etc. on the CPU or GPU?



Review of ML Operations



Matrix Multiplication

• Write a function to multiply two matrices using Python loops and 
time the function



Numpy

• import numpy as np
• Python wrappers around C code
• You can create numpy matrices of random numbers in any dimension 

using np.random.randint
• ex/ np.random.randint(1,10,size = (1,2))
• for a 1x2 (2D) structure

• Write a function to multiply two matrices using numpy and time the 
function



Intro to Using the GPU

• Nvidia has a software platform that pairs with their GPUs. This is 
called CUDA
• You can write CUDA code through Python (comes baked into PyTorch)

Python

CUDA

GPU



Torch tensors

• Tensor: an n-dimensional matrix
• To use the GPU, you must create a torch tensor and move it to the 

GPU
• Let’s start with an example of moving a tensor back and forth

• You can create random tensors using torch.rand, ex/ 
torch.rand([1,2])
• You can use torch.matmul to multiply two torch tensors
• Create two tensors of random numbers and write a function to 

multiply them
• Remember to control the flow to the GPU and back, i.e., your function must 

return a tensor on the CPU



Block Multiplication

• Each core is responsible for one 
block in C (the resulting matrix) 



Next Time

• While CUDA takes care of assigning work to each core, we can still 
take a more fine-grained look at these assignments and even control 
them
• We’ll look at GPU architecture in more details and how to control 

assignments with some new libraries (PyCUDA, Numba)


