CS 181Al
Lecture 13

Matrix Multiplication on GPU:
Behind the Scenes

Arthi Padmanabhan
Mar 1, 2023

Feedback: Course Webpage -> Resources

* Please assess how helpful each of the following are to your learning:

Paper reading
Lectures
In-class demos
* Assignments

e Office hours

 What can | do differently to make this course a better learning experience?

 Particular things I'd like feedback on:

e Paper reading — do you think you’re developing critical academic paper reading
skills? What can be changed so that you better develop these skills?

 Demos in class — are you able to follow along and is the pace reasonable? Is there
anything | can do during demos to make sure you’re getting the most out of it?

Last Time

* Review of ML operations

* Matrix multiplication in 3 ways:
e Python loop

* Numpy
* GPU

Important Concepts from Last Time

* True or False: If we try to run an operation but half our data is in GPU
memory and other half is in CPU memory, CUDA will take care of
moving everything to GPU

* True or False: Some operations that could be run in parallel are still
faster when run on the CPU

Today

* Thread organization in GPU
* How matrix multiplication is parallelized

* With the above concepts, we can understand how when we issue a
matrix multiplication to run on GPU, it is divided into threads

Kernel

* Function that is meant to be executed in parallel on the GPU

Thread Arrangement

* Threads are arranged as a grid of thread blocks

* Different kernels can have different threads per block and blocks per
grid

Grid
Thread Block O Thread Block 1 Thread Block N-1

Shared memory Shared memory Shared memory

Thread Arrangement

* One block per core, or SM -> all threads in a block have access to
shared memory

Grid

Thread Block O Thread Block 1 Thread Block N-1

Shared memory Shared memory Shared memory

Warps

* Warp = 32 threads; basic unit of execution

* We want the number of threads per block to be a multiple of 32 so
that we don’t waste threads (threads can only be allocated in warps)

Logical View Hardware View Execution

32 Thaads

Thread Block Warps Multiprocessor

Structural Organization

* The blocks within a grid and the threads

within a block can be arranged in a 1D,
2D, or 3D way

e Each thread can access its thread and

block index and can use this to determine
which piece of data to run on

Host Device
Grid 1
KO"'IO' ' Block Block
Block / Block
©1" | @1
/' Grid 2

Kernel ——
2 /

" Block (1, 1)

Block
(2,0

. Block
AR

One core per SM

Parallelism vs Concurrency

* Threads within a block run in parallel
e Different thread blocks can run concurrently on one SM

Kernel Launch

* When a kernel is launched, the following occur:
* Blocks of the grid are enumerated and distributed to cores (SMs)

* Threads within a thread block execute in parallel on different parts of the data
(using different ALUs)

 Different thread blocks can run concurrently on one core (they will pause at
the same time)

Full Picture

Thread

3

Thread Block

Executed by

NV

Kernel Grid

Executed by

ALU
—Core-

+

Streaming Multiprocessor

Complete GPU Unit

W

Executed by \.
} L

|

v

<

HE

Configurations?

* How is the threads/block and blocks/grid decided?

* Depends on both your computation and the device limitations
(amount of shared memory, limits on active thread, etc)

* CUDA does this for youl!

Simplest Solution

* Assigh one SM per element in output
* Need to load one row of A and one column of B per SM

Block Multiplication

Block Multiplication

* One core would be responsible for C4
* Each element fetched from memory is used twice instead of once

o
P vt P x

O OE ’>C\\ 2 A\\%n 5 AQ Z .

2 N
= b:* O\\lbz\%‘ q\ab%l 2 @‘\V\\Dbu
<8 :blz % O\\Z\On ¥ C\\%\O%er q\qbn‘;z

Block Multiplication

e Each core is responsible for one
block in C (the resulting matrix)

Next Time

* Look at memory and energy usage of ML models
* Next Wednesday:

* Go over ideas for final project

