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Feedback: Course Webpage -> Resources

* Please assess how helpful each of the following are to your learning:

Paper reading
Lectures
In-class demos
* Assignments

e Office hours

 What can | do differently to make this course a better learning experience?

 Particular things I'd like feedback on:

e Paper reading — do you think you’re developing critical academic paper reading
skills? What can be changed so that you better develop these skills?

 Demos in class — are you able to follow along and is the pace reasonable? Is there
anything | can do during demos to make sure you’re getting the most out of it?



Last Time

* Review of ML operations

* Matrix multiplication in 3 ways:
e Python loop

* Numpy
* GPU



Important Concepts from Last Time

* True or False: If we try to run an operation but half our data is in GPU
memory and other half is in CPU memory, CUDA will take care of
moving everything to GPU

* True or False: Some operations that could be run in parallel are still
faster when run on the CPU



Today

* Thread organization in GPU
* How matrix multiplication is parallelized

* With the above concepts, we can understand how when we issue a
matrix multiplication to run on GPU, it is divided into threads



Kernel

* Function that is meant to be executed in parallel on the GPU



Thread Arrangement

* Threads are arranged as a grid of thread blocks

* Different kernels can have different threads per block and blocks per
grid
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Thread Arrangement

* One block per core, or SM -> all threads in a block have access to
shared memory
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Warps

* Warp = 32 threads; basic unit of execution

* We want the number of threads per block to be a multiple of 32 so
that we don’t waste threads (threads can only be allocated in warps)
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Structural Organization

* The blocks within a grid and the threads

within a block can be arranged in a 1D,
2D, or 3D way

e Each thread can access its thread and

block index and can use this to determine
which piece of data to run on
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One core per SM




Parallelism vs Concurrency

* Threads within a block run in parallel
e Different thread blocks can run concurrently on one SM




Kernel Launch

* When a kernel is launched, the following occur:
* Blocks of the grid are enumerated and distributed to cores (SMs)

* Threads within a thread block execute in parallel on different parts of the data
(using different ALUs)

 Different thread blocks can run concurrently on one core (they will pause at
the same time)
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Configurations?

* How is the threads/block and blocks/grid decided?

* Depends on both your computation and the device limitations
(amount of shared memory, limits on active thread, etc)

* CUDA does this for youl!



Simplest Solution

* Assigh one SM per element in output
* Need to load one row of A and one column of B per SM



Block Multiplication




Block Multiplication

* One core would be responsible for C4
* Each element fetched from memory is used twice instead of once
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Block Multiplication

e Each core is responsible for one
block in C (the resulting matrix)




Next Time

* Look at memory and energy usage of ML models
* Next Wednesday:

* Go over ideas for final project



