
Matrix Multiplication on GPU: 
Behind the Scenes 

Arthi Padmanabhan
Mar 1, 2023

CS 181AI
Lecture 13



Feedback: Course Webpage -> Resources

• Please assess how helpful each of the following are to your learning:
• Paper reading
• Lectures
• In-class demos
• Assignments
• Office hours

• What can I do differently to make this course a better learning experience?
• Particular things I’d like feedback on:

• Paper reading – do you think you’re developing critical academic paper reading 
skills? What can be changed so that you better develop these skills?

• Demos in class – are you able to follow along and is the pace reasonable? Is there 
anything I can do during demos to make sure you’re getting the most out of it?



Last Time

• Review of ML operations
• Matrix multiplication in 3 ways:
• Python loop
• Numpy
• GPU



Important Concepts from Last Time

• True or False: If we try to run an operation but half our data is in GPU
memory and other half is in CPU memory, CUDA will take care of 
moving everything to GPU
• True or False: Some operations that could be run in parallel are still

faster when run on the CPU



Today

• Thread organization in GPU
• How matrix multiplication is parallelized
• With the above concepts, we can understand how when we issue a

matrix multiplication to run on GPU, it is divided into threads



Kernel

• Function that is meant to be executed in parallel on the GPU



Thread Arrangement

• Threads are arranged as a grid of thread blocks
• Different kernels can have different threads per block and blocks per 

grid



Thread Arrangement

• One block per core, or SM -> all threads in a block have access to 
shared memory



Warps

• Warp = 32 threads; basic unit of execution
• We want the number of threads per block to be a multiple of 32 so 

that we don’t waste threads (threads can only be allocated in warps)



Structural Organization

• The blocks within a grid and the threads 
within a block can be arranged in a 1D, 
2D, or 3D way
• Each thread can access its thread and 

block index and can use this to determine 
which piece of data to run on



One core per SM



Parallelism vs Concurrency

• Threads within a block run in parallel
• Different thread blocks can run concurrently on one SM



Kernel Launch

• When a kernel is launched, the following occur:
• Blocks of the grid are enumerated and distributed to cores (SMs)
• Threads within a thread block execute in parallel on different parts of the data 

(using different ALUs)
• Different thread blocks can run concurrently on one core (they will pause at 

the same time)



Full Picture
ALU



Configurations?

• How is the threads/block and blocks/grid decided?
• Depends on both your computation and the device limitations 

(amount of shared memory, limits on active thread, etc)
• CUDA does this for you!



Simplest Solution

• Assign one SM per element in output
• Need to load one row of A and one column of B per SM



Block Multiplication



Block Multiplication

• One core would be responsible for C11

• Each element fetched from memory is used twice instead of once



Block Multiplication

• Each core is responsible for one 
block in C (the resulting matrix) 



Next Time

• Look at memory and energy usage of ML models
• Next Wednesday:
• Go over ideas for final project


