
ML System Resources: Memory

Arthi Padmanabhan
Mar 20 2023

CS 181AI
Lecture 16



Logistics

• Final group projects and start up info were sent out this morning.
Please start a Slack channel (or any form of communication) with your 
group
• Wednesday: working day for proposals
• Proposals: due Monday 3/27 (template is on course webpage)
• Assignment 4 due Friday



Today

• GPU memory is often a significant bottleneck
• Demo: learn how to assess model memory usage for loading and running. 

Compare across models
• Paper: merging models to lower memory usage



Memory Demo

• Open lec16.ipynb



GPU Memory

• This is often a major bottleneck, both for training faster and for being 
able to run inference on several models on one GPU
• Even if they’re not running at the same time, this is hard. 
• Moving them back and forth between CPU and GPU is very slow, so we’d 

rather have them stay in GPU
• We saw that models take memory just to stay in GPU



CUDA Out of Memory



Today’s Paper: GEMEL

• Problem: when several models on one GPU, we often run out of GPU 
memory
• Simple solution: swap models in and out of GPU memory – we know 

this takes a long time
• Our solution: Can we merge redundant layers across models to lower 

memory usage of the whole workload?



• Model is a sequence of layers
• Layer = definition + weights

Memory Usage in GPUs

Convolutional Layer
(inputs=256, outputs=512, kernel=(3,3), 

stride=(0,0), padding=(0,0))
+

8



• Weights use GPU memory
• When models are run, GPU memory must also hold intermediates

Memory Usage in GPUs

9



Models Have High Load Time into GPU

• Swapping leads to lower accuracy compared to the case where all 
models can fit in GPU memory together

10



Model Merging

• Observation: some layers are shared between different models

Li
ne

ar

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Li
ne

ar

Li
ne

ar

Li
ne

ar

Li
ne

ar

11



Model Merging

Li
ne

ar

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Li
ne

ar

Li
ne

ar

Li
ne

ar

Li
ne

ar

12

• Observation: some layers are shared between different models



GEMEL

• How much memory could this hypothetically save on realistic 
workloads?
• Up to 86% -> could improve accuracy by 17% (once we account for costs of 

swapping)



Merging Layers

• What might be an issue if we simply took all layers with the same 
structure and made them use a single set of weights?
• Accuracy would take a hit! All layers in a model are trained together 

to perform a task.
• We can, however, retrain all the models together with the constraint 

that the shared layers must have the same weights



Joint Training

• The shared layer is fixed by creating a single object for the layer. Both 
models reference this layer



Joint Training

• A single loss function that combines the loss functions of each is used

Loss 1

Loss 2

Loss
Adjust all 
weights in both 
models



Mainstream?

• Mainstream also shared layers in the same way!
• However, Mainstream shared only the earliest layers of each model
• Why does that matter?



Observation: Power-Law Distribution

• Memory usage within model follows power law distribution

Li
ne

ar

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Co
nv
2d

Li
ne

ar

Shared stem: doesn’t 
save most memory-
heavy layers

18



Solution

• Merging can be done but we need to be careful about whether 
accuracy will meet the requirements
• Merging heuristic: find the layers that would save the most memory if 

shared and try training (greedy algorithm)
• Added optimizations to make this run faster



Memory Takeaways

• GPU memory can be a bottleneck when running several models on a
GPU
• It can also be a bottleneck when training (can Chat GPT fit on a single 

GPU?)
• In a couple weeks, we’ll look at how training works if the model is too big 

(occupies too much memory) for one GPU

• The person deploying models needs to be aware of memory when 
allocating models to GPUs and choosing batch sizes


