
Serving ML Models: Scheduling

Arthi Padmanabhan
Mar 27 2023

CS 181AI
Lecture 18



Logistics

• Project proposals due today 10pm
• Wednesday – we’ll start working on a problem in class in groups. Your 

assignment 5 is to complete the problem
• Next Monday (4/3): working session (instead of 4/12)



Today

• Scheduling principles and algorithms



Preemptible vs. Non-preemptible

• A preemptible resource can be taken away and used for something 
else
• E.g., a GPU

• A preemptible resource is shared through explicit scheduling
• A non-preemptible resource cannot be taken away without 

acknowledgement
• E.g., GPU memory

• A non-preemptible resource is shared through allocations and 
deallocations



Scheduler

• A scheduler is a high-level policy to decide which jobs to run when
• It is not responsible for the details of context-switching



When Does a Scheduler Run?

• A scheduler runs when a job changes state

• Let’s first consider a job that cannot be preempted – once it starts, it 
runs until completion

• In this case, the scheduler will only make a decision once the job 
finishes



Jobs

• For now, we will think of ML jobs at discrete, e.g., run ResNet50 on 
these 1000 images with a batch size of 16
• Reality: if processing video, you might also have to think about how to make 

discrete jobs when frames arrive continually

• There are often several (tens of) models trying to run jobs on a single 
GPU



Metrics

• What makes a scheduling policy “good”?



Metrics

• Minimize waiting time and response time
• Don’t have jobs waiting too long to start

• Maximize GPU utilization
• Don’t have idle GPU

• Maximize throughput
• Complete as many jobs as possible

• Fairness
• Try to give each process a similar percentage of the GPU



First Come First Serve (FCFS)

• The simplest form of scheduling
• GPU runs ML jobs in the order they arrived



A Gantt Chart Illustrates the Schedule
Process Arrival Time Burst Time

P1 0 7

P2 0 4

P3 0 1

P4 0 4

Assume they arrive in the order P1 -> P2 -> P3 -> P4. What is the average 
waiting time?



A Gantt Chart Illustrates the Schedule
Process Arrival Time Burst Time

P1 0 7

P2 0 4

P3 0 1

P4 0 4

0 7 11 12 16

P1 P2 P3 P4

Assume they arrive in the order P1 -> P2 -> P3 -> P4. What is the average 
waiting time?



Different Arrival Order?
Process Arrival Time Burst Time

P1 0 7

P2 0 4

P3 0 1

P4 0 4

Assume they arrive in the order P3 -> P2 -> P4 -> P1. What is the average 
waiting time?



Different Arrival Order?
Process Arrival Time Burst Time

P1 0 7

P2 0 4

P3 0 1

P4 0 4

0 1 5 9 16

P1P2P3 P4

Assume they arrive in the order P3 -> P2 -> P4 -> P1. What is the average 
waiting time?



Shortest Job First

• Slight tweak to FCFS
• Always schedule the job with the shortest burst time first



Shortest Job First
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

0

P1

7



Shortest Job First
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

0

P1

7

P3

8



Shortest Job First (SJF)
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

0

P1

7

P3

8

P2 P4

12



Is this always a good idea?



Is this always a good idea?

• You sometimes won’t know exactly how long a process takes
• If you’ve run the model before, you’ll probably have some idea

• You might starve longer jobs (they may never execute) -> not good for 
fairness



Adding preemptions
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4



Shortest Remaining Time First (SRTF)
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

0

P1

7

P3P2 P4

11

Further reduces average waiting time

P2

2 4 5

P1



Round-Robin

• So far we haven’t handled fairness (it’s a tradeoff with the others)
• Scheduler divides time into slots (also called quanta, individual: 

quantum)
• Maintain a FCFS queue
• Preempt if still running and re-add to queue



Round-Robin: Quantum = 3
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4



Round-Robin: Quantum = 3
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1

P1

P2

P2

P2
P1

P1
P3

P1
P3
P4

P1
P3
P4
P2

P1

P3
P4
P2
P1

P3

P4
P2
P1

P4

P2
P1
P4

P1
P4

P2 P1

P4

P4



Round-Robin: Quantum = 3
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P1 P3 P4 P2 P1 P4

Number of context switches?
Average wait time?
Average response time?

Note on ties: if a new job is 
added exactly when one is 
preempted, favor the new 
one



Round-Robin: Quantum = 3
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

P1 P2 P1 P3 P4 P2 P1 P4

Number of context switches: 7
Average wait time: 7
Average response time: 2.75



Round-Robin: Quantum = 1
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Number of context switches?
Average wait time?
Average response time?



Round-Robin: Quantum = 10
Process Arrival Time Burst Time

P1 0 7

P2 2 4

P3 4 1

P4 5 4

Number of context switches?
Average wait time?
Average response time?



Round-Robin Performance

• Depends on job length and quantum length
• Quantum length too low -> too many context switches
• Quantum length too high -> FCFS (high response time)
• Poor average waiting time when jobs are similar in length
• It is fair!



Next Time

• We’ll start writing code to implement these scheduling policies, which 
will be part of your assignment



Acknowledgements

• Jon Eyolfson: UCLA CS 111


