CS 181Al
Lecture 2

Intro to ML Models

Arthi Padmanabhan
Jan 23, 2023

Logistics

* Assignment 1 released this afternoon, due next Monday, Jan 30 (one
week turnaround because 90% of it will be done after today’s demo)

* Code from class will be available this afternoon as well

* Reading group assignments will be sent by tomorrow morning, and
first four papers will be on course webpage by then as well

Setup for Today

* Navigate to colab.research.google.com and create a new notebook

Today’s Plan

* Background on machine learning models
* Creating a neural network vs. using it — today’s focus is on using it

* Get set up with downloading an existing vision model (that someone
else created) and using it on our images

Algorithms and Models and Neural Networks
(oh my!)

 Algorithm is the pattern-recognition procedure that’s run on data to
create a model

* Neural network is just one type of machine learning model

Algorithm Model

Unseen Data

Existing Decision Tree S Prediction!

Data Algorithm

Existing (Often) Gradient
Data Descent

Unseen Data -
— Prediction!

Neural Networks

Data

Descent

Existing [(Often) Gradient

Unseen Data -
— Prediction!

* Process of using data to create the model: called training

* For today, training process = black box

Neural Networks

Unseen Data -
— Prediction!

* Process of using data to create the model: called training

* For today, training process = black box
* Then how do we get a usable model??

Pre-trained Models

* Other people have trained on large public datasets to create models
that you can use “off the shelf”

* For vision models, they can only identify specific objects

Widely Used Datasets

D

* ImageNet F e/ 79 bboaql

e Pascal 6757¢634¢%¢]|

. MINIST 2('7?’7'/&‘35/6'
Byl 901 §F 8% 9 H g

* CIFAR 16U YU 1580
159265 %\ 97 EF
AR 2JdLaD 4 Y F§ O}
O3 E073 86578
Ol &by b2« J§
7/ 281009806/

(a)

Structure of a Model

* Model consists of layers

* We'll focus mostly on vision models, in particular convolutional neural
networks (CNNs)

224 x224x3 224 x224x64

112 x 112 x 128

%556“% 7x7x512
ﬁbs X 28 x 512

14 x 14 x 512

W (=7 convolution+ReLU
{/ max pooling
fully nected+RelLU
softmax

1x1x4096 1x1x1000 - 5 car

Roles of Different Layers

 Early layers extract features, last layers classify image

Low-Level| |Mid-Level| |High-Level Trainable
Feature Feature Feature Classifier

!

Today’s Demo

* Navigate to colab.research.google.com and create a new notebook
* Add the following lines to the top.

import torch
import torchvision

Torch & Torchvision

* torch: open-source ML library used for creating neural networks

* torchvision: open-source computer vision library that contains
popular datasets, model architectures, etc.

* We'll be using the “PyTorch framework”
* PyTorch: open-source ML framework based on Python and torch

import torch
import torchvision

Today’s Demo

* Let’s download an existing model. ResNet50 is a common vision
model structure. It has 50 layers and is used to classify between
different objects

* Weights identify which dataset was used for training (more on this
later)

* In this case, ImageNet was used

resnet50 model = torchvision.models.resnet50(weights=torchvision.models.ResNet50 Weights.IMAGENET1K V1)

Today’s Demo

* Try printing the model
* What types of layers do you see?

Types of Layers

 Convolutional
e Linear

* Other items you might see when printing a model
* Relu
* BatchNorm

Inputs of a Model

* Tensor —> matrix
* Each step is matrix operation
* Weights are the matrices we multiply the inputs by

Today’s Demo

 Set up image access:

e Putimage in Google drive (use the same Google account you’re using to
access colab)

* Import Image from PIL (Python Imaging Library)
* Mount the Google drive

from PIL import Image
from google.colab import drive
drive.mount('/content/drive')

Today’s Demo

 Set up image access

* Open the image:

* In this example, | put golden.jpeg in a folder called colab_resources in my
Google drive and added the line below

img = Image.open('/content/drive/My Drive/colab resources/golden.jpeg').convert('RGB')

Nour Channels
2N

Height: 4 Units
(Pixels)

Width: 4 Units
(Pixels)

Today’s Demo

e Set up image access
* Open the image

* Convert image to a tensor:

* Torchvision has many types of transforms to manipulate the image before
feeding it through the model. The ones that are important to us are:
* Resize(x) -> resizes so that the aspect ratio stays the same and the height is x
e CenterCrop -> crop to the center 224
* ToTensor -> converts image to tensor
* Normalize -> normalize with mean and std dev of the whole dataset

Today’s Demo

e Set up image access
* Open the image

* Convert image to a tensor:

* Torchvision has many types of transforms to manipulate the image before
feeding it through the model. The ones that are important to us are:
* Resize(x) -> resizes so that the aspect ratio stays the same and the height is x
e CenterCrop -> crop to the center 224
* ToTensor -> converts image to tensor
* Normalize -> normalize with mean and std dev of the whole dataset

e .unsqueeze(0) -> adds another dimension to the front, e.g. (3, 224, 224)
becomes (1, 3, 224, 224)

Today’s Demo

* Parsing the output:

* Each value represents 1 class from ImageNet —> the model’s prediction of
how likely the image is to be that class

e Softmax: rescale so that elements lie in the range [0,1] and sumto 1

