
Intro to ML Models

Arthi Padmanabhan
Jan 23, 2023

CS 181AI
Lecture 2

Logistics

• Assignment 1 released this afternoon, due next Monday, Jan 30 (one
week turnaround because 90% of it will be done after today’s demo)
• Code from class will be available this afternoon as well
• Reading group assignments will be sent by tomorrow morning, and

first four papers will be on course webpage by then as well

Setup for Today

• Navigate to colab.research.google.com and create a new notebook

Today’s Plan

• Background on machine learning models
• Creating a neural network vs. using it – today’s focus is on using it
• Get set up with downloading an existing vision model (that someone

else created) and using it on our images

Algorithms and Models and Neural Networks
(oh my!)
• Algorithm is the pattern-recognition procedure that’s run on data to

create a model
• Neural network is just one type of machine learning model

(Often) Gradient
Descent

Decision Tree
Algorithm

Existing
Data

Existing
Data

Unseen Data

Unseen Data

Prediction!

Prediction!

Algorithm Model

Neural Networks

• Process of using data to create the model: called training
• For today, training process = black box

(Often) Gradient
Descent

Existing
Data

Unseen Data
Prediction!

Neural Networks

• Process of using data to create the model: called training
• For today, training process = black box
• Then how do we get a usable model??

(Often) Gradient
Descent

Existing
Data

Unseen Data
Prediction!

Pre-trained Models

• Other people have trained on large public datasets to create models
that you can use “off the shelf”
• For vision models, they can only identify specific objects

Widely Used Datasets

• ImageNet
• Pascal
• MNIST
• CIFAR

Structure of a Model

• Model consists of layers
• We’ll focus mostly on vision models, in particular convolutional neural

networks (CNNs)

car

Roles of Different Layers

• Early layers extract features, last layers classify image

Today’s Demo

• Navigate to colab.research.google.com and create a new notebook
• Add the following lines to the top.

Torch & Torchvision

• torch: open-source ML library used for creating neural networks
• torchvision: open-source computer vision library that contains

popular datasets, model architectures, etc.
• We’ll be using the “PyTorch framework”
• PyTorch: open-source ML framework based on Python and torch

Today’s Demo

• Let’s download an existing model. ResNet50 is a common vision
model structure. It has 50 layers and is used to classify between
different objects
• Weights identify which dataset was used for training (more on this

later)
• In this case, ImageNet was used

Today’s Demo

• Try printing the model
• What types of layers do you see?

Types of Layers

• Convolutional
• Linear
• Other items you might see when printing a model
• Relu
• BatchNorm

Inputs of a Model

• Tensor –> matrix
• Each step is matrix operation
• Weights are the matrices we multiply the inputs by

Today’s Demo

• Set up image access:
• Put image in Google drive (use the same Google account you’re using to

access colab)
• Import Image from PIL (Python Imaging Library)
• Mount the Google drive

Today’s Demo

• Set up image access
• Open the image:
• In this example, I put golden.jpeg in a folder called colab_resources in my

Google drive and added the line below

Today’s Demo

• Set up image access
• Open the image
• Convert image to a tensor:
• Torchvision has many types of transforms to manipulate the image before

feeding it through the model. The ones that are important to us are:
• Resize(x) -> resizes so that the aspect ratio stays the same and the height is x
• CenterCrop -> crop to the center 224
• ToTensor -> converts image to tensor
• Normalize -> normalize with mean and std dev of the whole dataset

Today’s Demo

• Set up image access
• Open the image
• Convert image to a tensor:
• Torchvision has many types of transforms to manipulate the image before

feeding it through the model. The ones that are important to us are:
• Resize(x) -> resizes so that the aspect ratio stays the same and the height is x
• CenterCrop -> crop to the center 224
• ToTensor -> converts image to tensor
• Normalize -> normalize with mean and std dev of the whole dataset

• .unsqueeze(0) -> adds another dimension to the front, e.g. (3, 224, 224)
becomes (1, 3, 224, 224)

Today’s Demo

• Parsing the output:
• Each value represents 1 class from ImageNet –> the model’s prediction of

how likely the image is to be that class
• Softmax: rescale so that elements lie in the range [0,1] and sum to 1

