
Distributed Training Pt. 1

Arthi Padmanabhan
Apr 5 2023

CS 181AI
Lecture 21



Logistics

• Assignment 5 (last assignment!) due on Friday
• Outline of rest of semester (!!)
• Today (4/5): Distributed Training part 1
• 4/10: Distributed Training part 2
• 4/12: Profiling + debugging
• 4/17: Efforts to lower model resource usage (+ different types of models)
• 4/19: Working session
• 4/24: Scale of models/resources in industry + look at full stack of ML pipelines
• 4/26: Project presentations



Today

• Why and how do we use multiple GPUs for training?
• What are the methods for aggregating gradients across GPUs?



Distributed Training

• Distributed training is the use of multiple GPUs working together on 
one training job

• Why would we need more than one GPU?



Distributed Training

• Distributed training is the use of multiple GPUs working together on 
one training job

• It can lower the time needed for training

• It can allow you to train when a model is too large for a single GPU



Distributed Training

• Distributed training is the use of multiple GPUs working together on 
one training job

• It can lower the time needed for training
• Running a single batch across several GPUs allows for increased batch size and

lower training time -> Data Parallelism

• It can allow you to train when a model is too large for a single GPU
• Splitting up a model such that different parts are on different GPUs -> Model 

Parallelism



Data vs. Model Parallelism



Reminder: Training Process

• Run inputs through model with weights w
• Calculate loss function
• Calculate gradients of loss function
• Update w



Reminder: Training Process

• Run inputs through model with weights w
• Calculate loss function
• Calculate gradients of loss function
• Update w

• Inputs = 1 batch



Training Batch Size

• Higher batch size = faster training

• What is limiting factor for batch size?



Training Batch Size

• Higher batch size = faster training

• GPU memory is limiting factor for batch size

• Using multiple GPUs allows us to effectively use a higher batch size
• batch_size = batch_size per GPU * num_GPUs



Data Parallelism quiz

• Which of the following is true about data parallelism across 4 GPUs?
1. The time per batch remains about the same. The number of 

batches per epoch decreases by a factor of 4. The time per epoch 
remains about the same. The overall training time decreases by a 
factor of 4.

2. The time per batch remains about the same. The number of 
batches per epoch decreases by a factor of 4. The time per epoch
decreases by a factor of 4. The overall training time decreases by a 
factor of 4.

3. The time per batch decreases by a factor of 4. The number of 
batches per epoch stays the same. The time per epoch decreases by 
a factor of 4. The overall training time decreases by a factor of 4.



Data Parallelism quiz

• Suppose batch size = 16, 1 GPU

All Data (128 samples)



Data Parallelism quiz

• Suppose batch size = 16, 1 GPU
• 8 batches of 16 = 128 samples

16 16 16 16 16 16 16 16GPU 0



Data Parallelism quiz

• Suppose batch size = 16, 4 GPUs
• 2 batches of 16*4 = 128 samples
• Time per batch is similar*
• Number of batches per epoch decreased
• Time per epoch decreased
• Overall training time decreased

16 16

16

16

16

16

16 16

GPU 0

GPU 1

GPU 2

GPU 3



Reminder: Matrix Multiplication + Bias

X*W + b = a



Data Parallelism



Gradient Update

• Reminder: at the end of every batch, gradients for the whole model 
are updated
• How does this work if each GPU sees part of the batch?
• Each GPU computes its own loss and gradients. Gradients are averaged and 

result is used to update the model



Synchronous

• Gradients are computed and model is updated after each batch
• Calculation must happen very efficiently



GPU0

GPU0

GPU1

GPU1

GPU2

GPU2

GPU3

GPU3

a0
b0

c0
d0

a1
b1

c1
d1

a2
b2

c2
d2

a3
b3

c3
d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3



Message Passing Interfaces (MPI)

• We are going to explore how to do that, but first, we’ll look at the
common message passing operations in parallel computing 



Broadcast

AP0

P1

P2

P3

A

A

A

A



Scatter

A B C DP0

P1

P2

P3

A

C

D

B



Gather

A B C DP0

P1

P2

P3

A

C

D

B



All-Gather

A B C DP0

A B C DP1

A B C DP2

A B C DP3

A

C

D

B



All-to-All

A0 B0 C0 D0P0

A1 B1 C1 D1P1

A2 B2 C2 D2P2

A3 B3 C3 D3P3

A0 A1 A2 A3

B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

B0



Reduce

op(A,B,C,D)P0

A B C DP1

A B C DP2

A B C DP3

A

C

D

B



All-Reduce

op(A,B,C,D)P0

P1

P2

P3

A

C

D

B op(A,B,C,D)

op(A,B,C,D)

op(A,B,C,D)



GPU0

GPU0

GPU1

GPU1

GPU2

GPU2

GPU3

GPU3

a0
b0

c0
d0

a1
b1

c1
d1

a2
b2

c2
d2

a3
b3

c3
d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3



GPU0

GPU0

GPU1

GPU1

GPU2

GPU2

GPU3

GPU3

a0
b0

c0
d0

a1
b1

c1
d1

a2
b2

c2
d2

a3
b3

c3
d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

All-Reduce



All-Reduce

• “Operation that reduces a set of arrays on distributed workers to a 
single array that is then redistributed back to each worker”



All-Reduce

• Metrics
• Bandwidth (number of messages)



GPU0

GPU0

GPU1

GPU1

GPU2

GPU2

GPU3

GPU3

a0
b0

c0
d0

a1
b1

c1
d1

a2
b2

c2
d2

a3
b3

c3
d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3

a0 + a1 + a2 + a3

b0 + b1 + b2 + b3

c0 + c1 + c2 + c3

d0 + d1 + d2 + d3



Next Time

• Ring-All-Reduce
• Analysis/comparison of Ring All-Reduce vs other strategies
• Asynchronous Gradient Update (strong vs. weak consistency)



Acknowledgments

• Nikita Namjoshi, Google Cloud Developer Advocate


