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Logistics

e Assignment 5 (last assignment!) due on Friday

* Qutline of rest of semester (!!)
* Today (4/5): Distributed Training part 1
* 4/10: Distributed Training part 2
* 4/12: Profiling + debugging
« 4/17: Efforts to lower model resource usage (+ different types of models)
* 4/19: Working session
» 4/24: Scale of models/resources in industry + look at full stack of ML pipelines
* 4/26: Project presentations



Today

 Why and how do we use multiple GPUs for training?
* What are the methods for aggregating gradients across GPUs?



Distributed Training

e Distributed training is the use of multiple GPUs working together on
one training job

* Why would we need more than one GPU?



Distributed Training

e Distributed training is the use of multiple GPUs working together on
one training job

* It can lower the time needed for training

* It can allow you to train when a model is too large for a single GPU



Distributed Training

e Distributed training is the use of multiple GPUs working together on
one training job

* It can lower the time needed for training

* Running a single batch across several GPUs allows for increased batch size and
lower training time -> Data Parallelism

* It can allow you to train when a model is too large for a single GPU

 Splitting up a model such that different parts are on different GPUs -> Model
Parallelism



Data vs. Model Parallelism

Data parallelism Model parallelism

Shared model Partitioned model



Reminder: Training Process

* Run inputs through model with weights w
* Calculate loss function
* Calculate gradients of loss function

 Update w
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Reminder: Training Process

* Run inputs through model with weights w

* Inputs = 1 batch

train gen = torch.utils.data.Dataloader(dataset = train data,

batch size = batch_sizeL
shuffle = True)




Training Batch Size

* Higher batch size = faster training

* What is limiting factor for batch size?



Training Batch Size

* Higher batch size = faster training
* GPU memory is limiting factor for batch size

e Using multiple GPUs allows us to effectively use a higher batch size
e batch_size = batch_size per GPU * num_GPUs



Data Parallelism quiz

* Which of the following is true about data parallelism across 4 GPUs?

1. The time per batch remains about the same. The number of
batches per epoch decreases by a factor of 4. The time per epoch
remains about the same. The overall training time decreases by a
factor of 4.

2. The time per batch remains about the same. The number of
batches per epoch decreases by a factor of 4. The time per epoch
decreases by a factor of 4. The overall training time decreases by a
factor of 4.

3. The time per batch decreases by a factor of 4. The number of
batches per epoch stays the same. The time per epoch decreases by
a factor of 4. The overall training time decreases by a factor of 4.



Data Parallelism quiz

e Suppose batch size =16, 1 GPU

All Data (128 samples)



Data Parallelism quiz

e Suppose batch size =16, 1 GPU
* 8 batches of 16 = 128 samples



Data Parallelism quiz

e Suppose batch size = 16, 4 GPUs
e 2 batches of 16*4 = 128 samples

* Time per batch is similar*

GPUO

 Number of batches per epoch decreased
GPU 1 * Time per epoch decreased

e Overall training time decreased
GPU 2

GPU 3




Reminder: Matrix Multiplication + Bias

wow, W, w,

wow, W, W,

X*W+b=a

WX, + WX, +wx; +w,x, +b

wx, +w,x, +wx, +w,x, +b

WX, + WX, + WX, +w,x, +b

activation




Data Parallelism
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Gradient Update

 Reminder: at the end of every batch, gradients for the whole model
are updated

* How does this work if each GPU sees part of the batch?

* Each GPU computes its own loss and gradients. Gradients are averaged and
result is used to update the model
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Synchronous

* Gradients are computed and model is updated after each batch
 Calculation must happen very efficiently
B

—~—

qméiw =

g\éy\chrohov\g \
N\’o\/‘~c§\§+\/'\\au\%iom ¥ @\am\—dﬂ =

D]é—h( Luares




do
bo
\ Co ,
, i, \
A >/

7 GPUO

- aptajtaytas

:b0+b1+b2+b¥

Gt C Gyt Gy

&fo+d1+d2+dé/

dj

b,
\ C1 ,
; d, \
NS >/

7 GPUL

- aptajta,tas

:b0+b1+b2+b¥

Gt Gt Gt ey

<30+d1+d2+dé/

7 GPU2 )

aptajta,tas

:b0+b1+b2+b¥

Gt Gt Gt ey

<f0+d1+d2+dé/

d3
bs
\ C3 ,
, i, \
< 2/

7 GPU3

- aptajta,tas

:bo+b1+b2+b¥

\cm+q+c[+%1

\\O+d +d2+di/




Message Passing Interfaces (MPI)

* We are going to explore how to do that, but first, we’ll look at the
common message passing operations in parallel computing



Broadcast
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Scatter
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Gather
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All-Gather
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Reduce
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All-Reduce
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All-Reduce

* “Operation that reduces a set of arrays on distributed workers to a
single array that is then redistributed back to each worker”



All-Reduce

* Metrics
e Bandwidth (number of messages)
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Next Time

* Ring-All-Reduce
* Analysis/comparison of Ring All-Reduce vs other strategies
* Asynchronous Gradient Update (strong vs. weak consistency)
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