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Logistics

• Assignment 5 (last assignment!) due on Friday
• Outline of rest of semester (!!)
• Today (4/5): Distributed Training part 1
• 4/10: Distributed Training part 2
• 4/12: Profiling + debugging
• 4/17: Efforts to lower model resource usage (+ different types of models)
• 4/19: Working session
• 4/24: Scale of models/resources in industry + look at full stack of ML pipelines
• 4/26: Project presentations



Today

• Why and how do we use multiple GPUs for training?
• What are the methods for aggregating gradients across GPUs?



Distributed Training

• Distributed training is the use of multiple GPUs working together on 
one training job

• Why would we need more than one GPU?



Distributed Training

• Distributed training is the use of multiple GPUs working together on 
one training job

• It can lower the time needed for training

• It can allow you to train when a model is too large for a single GPU



Distributed Training

• Distributed training is the use of multiple GPUs working together on 
one training job

• It can lower the time needed for training
• Running a single batch across several GPUs allows for increased batch size and

lower training time -> Data Parallelism

• It can allow you to train when a model is too large for a single GPU
• Splitting up a model such that different parts are on different GPUs -> Model 

Parallelism



Data vs. Model Parallelism



Reminder: Training Process

• Run inputs through model with weights w
• Calculate loss function
• Calculate gradients of loss function
• Update w



Reminder: Training Process

• Run inputs through model with weights w
• Calculate loss function
• Calculate gradients of loss function
• Update w

• Inputs = 1 batch



Training Batch Size

• Higher batch size = faster training

• What is limiting factor for batch size?



Training Batch Size

• Higher batch size = faster training

• GPU memory is limiting factor for batch size

• Using multiple GPUs allows us to effectively use a higher batch size
• batch_size = batch_size per GPU * num_GPUs



Data Parallelism quiz

• Which of the following is true about data parallelism across 4 GPUs?
1. The time per batch remains about the same. The number of 

batches per epoch decreases by a factor of 4. The time per epoch 
remains about the same. The overall training time decreases by a 
factor of 4.

2. The time per batch remains about the same. The number of 
batches per epoch decreases by a factor of 4. The time per epoch
decreases by a factor of 4. The overall training time decreases by a 
factor of 4.

3. The time per batch decreases by a factor of 4. The number of 
batches per epoch stays the same. The time per epoch decreases by 
a factor of 4. The overall training time decreases by a factor of 4.



Data Parallelism quiz

• Suppose batch size = 16, 1 GPU

All Data (128 samples)



Data Parallelism quiz

• Suppose batch size = 16, 1 GPU
• 8 batches of 16 = 128 samples

16 16 16 16 16 16 16 16GPU 0



Data Parallelism quiz

• Suppose batch size = 16, 4 GPUs
• 2 batches of 16*4 = 128 samples
• Time per batch is similar*
• Number of batches per epoch decreased
• Time per epoch decreased
• Overall training time decreased
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Reminder: Matrix Multiplication + Bias

X*W + b = a



Data Parallelism



Gradient Update

• Reminder: at the end of every batch, gradients for the whole model 
are updated
• How does this work if each GPU sees part of the batch?
• Each GPU computes its own loss and gradients. Gradients are averaged and 

result is used to update the model



Synchronous

• Gradients are computed and model is updated after each batch
• Calculation must happen very efficiently
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Message Passing Interfaces (MPI)

• We are going to explore how to do that, but first, we’ll look at the
common message passing operations in parallel computing 
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Gather
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All-Gather
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All-to-All
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Reduce
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All-Reduce
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All-Reduce

• “Operation that reduces a set of arrays on distributed workers to a 
single array that is then redistributed back to each worker”



All-Reduce

• Metrics
• Bandwidth (number of messages)
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Next Time

• Ring-All-Reduce
• Analysis/comparison of Ring All-Reduce vs other strategies
• Asynchronous Gradient Update (strong vs. weak consistency)
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