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Logistics

• All assignments done!
• Remaining: 1 round of paper reading, project presentation, project

report
• Outline of rest of semester (!!)
• Today: Distributed Training part 2
• 4/12: Profiling + debugging
• 4/17: Efforts to lower model resource usage (+ different types of models)
• 4/19: Working session
• 4/24: Scale of models/resources in industry + look at full stack of ML pipelines
• 4/26: Project presentations



Last Time

• Data vs Model Parallelism
• Synchronous Distributed Training
• Strategies for Gradient Aggregation



Last Time: Synchronous Distributed Training

• Gradients are computed and model is updated after each batch
• Calculation must happen very efficiently



Last Time: Gradient Calculation

• At the end of every batch, gradients for the whole model are
calculated
• How does this work if each GPU sees part of the batch?
• Each GPU computes its own loss and gradients. Gradients are averaged and 

result is used to update the model



Today

• Synchronous Gradient Calculation Strategies
• Asynchronous Distributed Training
• Consistency Models
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All-Reduce
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• “Operation that reduces a set of arrays on distributed workers to a 
single array that is then redistributed back to each worker”
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Gradient Aggregation Metrics

• Metrics
• Bandwidth (number of messages)
• Fault tolerance
• Speed of convergence
• Elasticity
• Ease of use



Ring All-Reduce

• Most used in industry
• Down-side: scales linearly with number of GPUs
• Alternative: GCP Reduction Server



Synchronous Gradient Update Summary

• Keeps the models weights in sync after each batch
• Hardest part is getting gradients exchanged between GPUs after each 

batch
• Synchronous distributed training can be run across multiple GPUs on 

the same machine or even across multiple machines with several 
GPUs each



Asynchronous Gradient Update

• Keep one server for all gradients -> parameter server model
• Each worker computes gradients and makes updates asynchronously 

(no waiting for each other)



Parameter Server



Asynchronous Gradient Update

• Keep one server for all gradients -> parameter server model
• Each worker computes gradients and makes updates asynchronously 

(no waiting for each other)
• What could go wrong?



Asynchronous Gradient Update

• Keep one server for all gradients -> parameter server model
• Each worker computes gradients and makes updates asynchronously 

(no waiting for each other)
• Workers could be taking a stale version of parameters and computing 

gradients on those!



Consistency Models

• Strong
• Weak
• Eventual
• Bounded



Next Time

• Profiling + Debugging your ML System
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