CS 181AI Lecture 5

Training cont. + Object Detectors

Arthi Padmanabhan

Feb 1, 2023

Logistics

• Assignment 2 is out

Today's Plan

- Group B leads reading discussion
- Finish discussion about debugging low accuracy when training a neural network
- Object Detection models

Course Path: The First Half

Intro to ML models and hands-on experience working with them

- Run a pre-trained model
 over your own images (1/23)
- Learn about training process and train a small model on a common dataset (1/25)
- Debug common issues with low accuracy when training (1/30)
- Learn about different types of models and their training processes (2/1)

Ethical AI

- Assess goals in building models
- Assess methods of data collection
- Study how various types of bias affect model results
- Study real use-cases

- Computational Resources to Run and Train Models
- Learn about properties of machines that are particularly good for ML
- Study state-of-the-art ML devices + some promising future computing methods (e.g., quantum)
- Learn about how using multiple machines can enable scaling of ML tasks
- Study methods for lowering computational resources needed

Other Resources to Run and Train Models: Memory, Energy

- Compare memory and energy usage of running and training various types of models
- Study strategies for lowering memory and energy usage
- Case study: ML for monitoring agriculture

Improving Model Accuracy

- Common culprits:
 - Data
 - Model
 - Training Process

Labeling Example

• How many **entities** are in the following sentence?

Darth Sidious, known simply as the Emperor, was a Dark Lord of the Sith who reigned over the galaxy as Galactic Emperor of the First Galactic Empire.

Labeling

• More data isn't always better

Labeling

• More data isn't always better

Labeling

- Programmatic Labeling can be messy but much faster and more adaptive
- Semi-supervision, or self-training: start with initial set of labels and train on new samples only include the ones with a high score
- Active learning only label those that model is uncertain about

• Which model do you hope your bank uses?

Model A	Actual Fraud	Actual Normal
Predicted Fraud	10	10
Predicted Normal	90	890
Model B	Actual Fraud	Actual Normal
Predicted Fraud	90	90
	50	50

- Which model do you hope your bank uses?
 - Just going by accuracy, they both have an accuracy of 90%

Model A	Actual Fraud	Actual Normal
Predicted Fraud	10	10
Predicted Normal	90	890
Model B	Actual Fraud	Actual Normal
Predicted Fraud	90	90

Small data and rare occurrences

- Statistically, predicting the majority class has a higher chance of being right
- Asymmetric cost of error: different cost of wrong prediction

Computer Facts @computerfact

concerned parent: if all your friends jumped off a bridge would you follow them? machine learning algorithm: yes.

3:20 PM · Mar 15, 2018 · Twitter Web Client

7.2K Retweets 292 Quote Tweets 14.6K Likes

- Overall accuracy is most commonly used, but it's insufficient when there's class imbalance because it treats all classes the same
- F1: 2*(precision)*(recall) / (precision + recall)

• Precision, Recall, and F1?

Model A	Actual Fraud	Actual Normal
Predicted Fraud	10	10
Predicted Normal	90	890
Model B	Actual Fraud	Actual Normal
Model B Predicted Fraud	Actual Fraud 90	Actual Normal 90

- Model A:
 - Precision = 50% (10/20)
 - Recall = 10% (10/100)
 - F1 = 17%
- Model B:
 - Precision = 50% (90/180)
 - Recall = 90% (90/100)
 - F1 = 64%

Model A	Actual Fraud	Actual Normal
Predicted Fraud	10	10
Predicted Normal	90	890
Model B	Actual Fraud	Actual Normal
Predicted Fraud	90	90

Not Enough Data

• Transfer Learning

To Freeze or Not to Freeze

• While fine-tuning, "freezing" some layers can make training go faster at the expense of lower accuracy

Improving Model Accuracy

- Common culprits:
 - Data
 - Model
 - Training Process

Models

- Layers -> generally more will give higher accuracy
- Using a well-established model will generally give higher accuracy both because structure has been tested and because weights from pre-training are often available
- Details of how model structure (i.e., different layer types, order) affects accuracy is beyond scope of this course

Improving Model Accuracy

- Common culprits:
 - Data
 - Model
 - Training Process

Training Process

- Learning rate
- Optimizer
- Common mistakes: eval() vs. train(), didn't zero the gradients, didn't pass the correct model's parameters to the optimizer

Object Detection

• Need to identify where objects are AND what they are

Faster RCNN

SSD (Single Shot Detector)

- Alternatively, these could be done together
- Divide image to cells. At each cell, 4 bounding boxes/object pairs are predicted. The object could be None

Cells of Different Sizes

