
Performance + Parallelism

Arthi Padmanabhan
Feb 13, 2023

CS 181AI
Lecture 8



Notes about Assignment 2

• Please make sure you’re subscribed to #assignmenthelp
• Sometimes ML is hard to explain
• A few percentage points can make a big difference!



Processes

• Instance of a running program
• Program contains:
• Instructions
• Data
• Memory allocations
• Symbols it uses

• Process contains:
• Program + execution-specific information



Systems Concepts 

• How do we run processes faster?
• How do we handle it smoothly when a process is interrupted?
• How do we schedule processes efficiently?
• We’ll be asking similar questions about machine learning jobs



Performance!

• What does it mean for a program to be fast?
• Program execution as some number of items, things to do
• Two concepts:
• Items per unit of time -> bandwidth, or throughput (more is better)
• Time per item, or latency -> less is better

• Improving either of these will make your program faster



Metrics

• Bandwidth, latency -> they are often related
• If you reduce the time to run a program from 5s to 4s, you increase 

the number per minute from 12 to 15
• If the conditions are right…
• Hopefully we can improve both metrics, sometimes we might need to 

pick one



Bandwidth

• Measures how much work can get done in one unit of time
• Parallelism improved bandwidth
• “Never underestimate the bandwidth of a station wagon full of tapes 

hurtling down the highway.”



Latency

• Measures how long it takes to do a task
• Also called response time
• Important for tasks that are real-time, like self-driving cars



Improving Latency

• Good way is to improve the time for a single process
• There is a limit
• Any improvements will also help with parallelized version

• However, faster sequential algorithms might not parallelize as well
• http://computers-are-fast.github.io
• Moral: don’t just guess which parts of your code are slow
• Profile your code! We’ll get to methods of doing this later in the course

http://computers-are-fast.github.io/


Exercise

• You need to make 100 paper airplanes. What’s the fastest way to do 
this?
• What factors does your answer depend on?



Do Less Work

• Omit unnecessary work
• Avoid calculating unnecessary intermediates
• Calculate results only to the accuracy necessary for final output



Logging

• Producing text output to a log file or to a console screen is 
surprisingly expensive for a computer



Caching

• Store the results of expensive side-effect-free operations (e.g., I/O, 
computations) and reuse them if you know they’re still valid



Be Prepared

• If you know the user is going to ask for something, you can have it 
ready beforehand
• ex/ you know customer is going to ask for an Excel report with some numbers 

and the numbers take a while to compute -> run the computations 
beforehand; then putting the necessary numbers in Excel is fast



Libraries

• Be careful in your choice of libraries
• Often library code can run faster than what you can write
• Other times, it’s better to optimize for your specific case



Wait for Better Machines?

• Back in the day, it was fine to write code with bad performance -> it 
was assumed that next year’s CPUs would make it run acceptably
• Moore’s law: observation that the number of transistors on a 

microchip will double about every two years 



End of Moore’s Law?



Moore’s Law

• “I guess I see Moore’s law dying 
in the next decade or so”



Moore’s Law

• “I guess I see Moore’s law dying 
in the next decade or so”

- Gordon Moore



Throw More Resources at the Problem

• Use more CPUs!
• We will study how to effectively use more resources



Concurrency vs. Parallelism

• Concurrency:
• Switching between two or more things (you can get interrupted)

• Goal: make progress on multiple things at once

• Parallelism:
• Running two or more things at the same time (they are independent)

• Goal: finish multiple things as fast as possible



Concurrency vs. Parallelism

• You’re sitting at a table for dinner. You can:
• Eat
• Drink
• Talk
• Gesture

• Caveat: you’re so hungry that if you start eating, you won’t stop until
you finish
• Which tasks can and cannot be done concurrently?
• Which tasks can and cannot be done in parallel?



More Parallelism, More Problems

• It is often harder to write parallel code
• Some domains are “embarrassingly parallel”, others are “inherently 

sequential”
• There is often coordination overhead -> is it even worth it?
• Often, programs have a sequential part and a parallelizable part
• If sequential dominates, running on multiple CPUs isn’t going to help
• Known as Amdahl’s law



Complications

• There is no longer a total ordering between events
• Some events A are guaranteed to happen before others B
• Many events X and Y can occur in the order XY or YX



Races

• A race occurs when two or more processes try to access the same
data and at least one of those accesses is a write
• Avoid races using locks, synchronization



Deadlocks

• A deadlock occurs when none of the processes can make progress
because there is a cycle in the resource requests



General Principle

• The correctness of a parallel program should not depend on accidents 
of timing



Next Time: GPUs and Parallelization

• All about GPUs!



Acknowledgments

• Programming for Performance, University of Waterloo 
• Operating Systems, UCLA


