CS 181Al
Lecture 9

Locking

Arthi Padmanabhan
Feb 15, 2023



Last Time

* Metrics for performance and common ways to improve them

* Moore’s Law: can’t simply wait for better CPUs anymore; current
trend: more parallelism

* Intro to parallelizing code



Today: Parallelizing Code

* Races
e Deadlocks



Races

* A race occurs when two or more processes try to access the same
data and at least one of those accesses is a write

* Avoid races using locks, synchronization




What are the possible values of the bank

account?
. Oder | Resut _

Class Account R1 W1 R2 W2
amount = 20 i 2 e W2
R1 R2 W2 W1
R2 W2 R1 W1
withdraw: ) - - -
amount-=5 R2 R1 w1 W2

If withdraw is executed in parallel by two threads, what are the
possible values of amount?



Locks

e Simplest lock is “mutual exclusion” lock, or mutex
* Associated with a single variable

* When someone has the lock, nobody else can read or write the
variable



Mutex Lock

Class Account
amount = 20

lock = Lock()
withdraw:
acquire lock

amount -=5
release lock



Mutex Lock

Class Account
amount = 20

lock = Lock()

Important: “amount -=5"
withdraw: is both a read and a write.
Why is it important that
amount -= the lock is around both

the read and the write?

release lock

acquire lock



Critical Section

* Everything between the acquire and release is the critical section

// code

// acquire lock
// critical section
// release lock

// code

 Critical sections should have minimal overhead: efficient, fair, and
simple



Thread

* We’ll get to these when we talk about GPUs!

* For now, take thread to mean something that runs processes in
parallel



Synchronization

* Mutex is great for resource control, but it doesn’t specify the order in
which things should happen



Order of prints

* How do we make this print “I’'m Thread 1” before “I'm Thread 2”7
def p1:
print(“I'm Thread 1”)

def p2:
print(“I'm Thread 2”)

Create thread that calls p1
Create thread that call p2
Initialize the two threads // initializes them in unknown order



Semaphore

* An unsighed integer: you set the value at the beginning and can never
directly access the value again after that

* There are functions to increment and decrement by 1

* Decrement is potentially a blocking function — if decrementing would
result in a negative number, the function waits until some other
thread increments it

* When incrementing, if there is at least one thread waiting on the
semaphore, exactly one thread will become unblocked



Order of prints

* How do we make this print “I’'m Thread 1” before “I'm Thread 2”7
def p1:
print(“I'm Thread 1”)

def p2:
print(“I'm Thread 2”)

Create thread that calls p1
Create thread that call p2
Initialize the two threads // initializes them in unknown order



Order of prints

* How do we make this print “I'm Thread 1” before “I’'m Thread 2”7
def p1:

print(“I’'m Thread 1”)

sem.increment()

def p2:
sem.decrement()
print(“I’'m Thread 2”)

Initialize semaphore sem with value 0

Create thread that calls p1

Create thread that call p2

Initialize the two threads // initializes them in unknown order



Barriers

* Point in the program where threads stop and wait for all threads to
reach that point before proceeding

* Describe a situation where this might be useful (hint: think about
operations over arrays or grids)



Monitors & Condition Variables

* Monitor — mutual exclusion
* Conditional variables — synchronization

* Conditional variables — wait and notify

* Wait: block myself and give up control of the lock (a queue is formed on this
variable)

* Notify: causes next thread in that queue to be released so it can re-acquire
the lock and keep running



Deadlocks

* A deadlock occurs when none of the processes can make progress
because there is a cycle in the resource requests

Process A E E Process B

N Y




Bank Account Example

e User A wants to transfer money from Account 1 to Account 2



Bank Account Example

e User A wants to transfer money from Account 1 to Account 2
e User B wants to transfer money from Account 2 to Account 1



Next Time: GPUs and Parallelization

e All about GPUs!



