
Locking

Arthi Padmanabhan
Feb 15, 2023

CS 181AI
Lecture 9



Last Time

• Metrics for performance and common ways to improve them
• Moore’s Law: can’t simply wait for better CPUs anymore; current 

trend: more parallelism
• Intro to parallelizing code



Today: Parallelizing Code

• Races
• Deadlocks



Races

• A race occurs when two or more processes try to access the same
data and at least one of those accesses is a write
• Avoid races using locks, synchronization



What are the possible values of the bank 
account?
Class Account

amount = 20

withdraw:
amount -= 5

If withdraw is executed in parallel by two threads, what are the 
possible values of amount?

Order Result

R1 W1 R2 W2

R1 R2 W1 W2

R1 R2 W2 W1

R2 W2 R1 W1

R2 R1 W2 W1

R2 R1 W1 W2



Locks

• Simplest lock is “mutual exclusion” lock, or mutex
• Associated with a single variable
• When someone has the lock, nobody else can read or write the 

variable



Mutex Lock

Class Account
amount = 20
lock = Lock()

withdraw:
acquire lock
amount -= 5
release lock



Mutex Lock

Class Account
amount = 20
lock = Lock()

withdraw:
acquire lock
amount -= 5
release lock

Important: “amount -=5” 
is both a read and a write. 
Why is it important that 
the lock is around both 
the read and the write?



Critical Section

• Everything between the acquire and release is the critical section

// code
// acquire lock
// critical section
// release lock
// code

• Critical sections should have minimal overhead: efficient, fair, and 
simple



Thread

• We’ll get to these when we talk about GPUs!
• For now, take thread to mean something that runs processes in 

parallel 



Synchronization

• Mutex is great for resource control, but it doesn’t specify the order in 
which things should happen



Order of prints

• How do we make this print “I’m Thread 1” before “I’m Thread 2”?
def p1:

print(“I’m Thread 1”)

def p2:
print(“I’m Thread 2”)

Create thread that calls p1
Create thread that call p2
Initialize the two threads // initializes them in unknown order



Semaphore

• An unsigned integer: you set the value at the beginning and can never 
directly access the value again after that
• There are functions to increment and decrement by 1
• Decrement is potentially a blocking function – if decrementing would 

result in a negative number, the function waits until some other 
thread increments it
• When incrementing, if there is at least one thread waiting on the 

semaphore, exactly one thread will become unblocked 



Order of prints

• How do we make this print “I’m Thread 1” before “I’m Thread 2”?
def p1:

print(“I’m Thread 1”)

def p2:
print(“I’m Thread 2”)

Create thread that calls p1
Create thread that call p2
Initialize the two threads // initializes them in unknown order



Order of prints

• How do we make this print “I’m Thread 1” before “I’m Thread 2”?
def p1:

print(“I’m Thread 1”)
sem.increment()

def p2:
sem.decrement()
print(“I’m Thread 2”)

Initialize semaphore sem with value 0
Create thread that calls p1
Create thread that call p2
Initialize the two threads // initializes them in unknown order



Barriers

• Point in the program where threads stop and wait for all threads to 
reach that point before proceeding
• Describe a situation where this might be useful (hint: think about 

operations over arrays or grids)



Monitors & Condition Variables

• Monitor – mutual exclusion
• Conditional variables – synchronization
• Conditional variables – wait and notify
• Wait: block myself and give up control of the lock (a queue is formed on this 

variable)
• Notify: causes next thread in that queue to be released so it can re-acquire 

the lock and keep running



Deadlocks

• A deadlock occurs when none of the processes can make progress
because there is a cycle in the resource requests



Bank Account Example

• User A wants to transfer money from Account 1 to Account 2



Bank Account Example

• User A wants to transfer money from Account 1 to Account 2
• User B wants to transfer money from Account 2 to Account 1



Next Time: GPUs and Parallelization

• All about GPUs!


