
CS 105
Lab 3: Defusing a Binary Bomb

1 Introduction

The nefarious Dr. Evil has planted a slew of “binary bombs” on our machines. A binary bomb is a program
that consists of a sequence of phases. Each phase expects you to type a particular string on stdin. If you
type the correct string, then the phase is defused and the bomb proceeds to the next phase. Otherwise, the
bomb explodes by printing "BOOM!!!" and then terminating. The bomb is defused when every phase has
been defused.

There are too many bombs for us to deal with, so we are giving each group (continue in your two-person
group) a bomb to defuse. Your mission, which you have no choice but to accept, is to defuse your bomb
before the due date. Good luck, and welcome to the bomb squad!

2 Defusing Your Bomb

Your job for this lab is to defuse your bomb. You must do the assignment on Wilkes. In fact, there is a
rumor that Dr. Evil really is evil, and the bomb will always blow up if run elsewhere. There are several other
tamper-proofing devices built into the bomb as well, or so we hear.

You can use many tools to help you defuse your bomb. Please look at the hints section for some tips
and ideas. We STRONGLY recommend that you create a file containing the disassembled code (you can
use either gdb or objdump to do so) and then, as you develop understanding, add comments to each line
of that file. Doing so will save you from having to repeatedly try to understand the same code. The best way
to figure out the code is a combination of studying it and understanding what the instructions do, combined
with using gdb to step through the disassembled binary.

And again, start by reading the hints section!
Each time your bomb explodes it notifies the bomblab server, and you lose 1/32 point (up to a max of

2 points) in the final score for the lab. So there are minimal consequences to exploding the bomb. . . So
experiment!!

There are six phases for a total of 70 points. The first four phases are worth 10 points each, while the
remaining two are 15 points each. Although phases get progressively harder to defuse, the expertise you gain
as you move from phase to phase should offset this difficulty. However, the last phase is very challenging,
so please don’t wait until the last minute to start.

The bomb ignores blank input lines. If you run your bomb with a command line argument, for example,

linux> ./bomb psol.txt

1



then it will read the input lines from psol.txt until it reaches EOF (end of file), and then switch over
to stdin. In a moment of weakness, Dr. Evil added this feature so you don’t have to keep retyping the
solutions to phases you have already defused.

To avoid accidentally detonating the bomb, you will need to learn how to single-step through the as-
sembly code and how to set breakpoints. You will also need to learn how to inspect both the registers and
the memory states. One of the nice side-effects of doing the lab is that you will get very good at using a
debugger. This is a crucial skill that will pay big dividends the rest of your career.

Hand-In

There is no explicit hand-in. The bomb will notify your instructor automatically about your progress as you
work on it. You can keep track of how you are doing by looking at the class scoreboard at:

https://www.cs.hmc.edu/cs105/bomb/scoreboard

This web page is updated continuously to show the progress for each bomb.

Hints (Please read this!)

There are many ways of defusing your bomb. You can examine it in great detail without ever running the
program, and figure out exactly what it does. This is a useful technique, but it is not always easy to do. You
can also run it under a debugger, watch what it does step by step, and use this information to defuse it. This
is probably the fastest way of defusing it.

We do make one request, please do not use brute force! You could write a program that will try every
possible key to find the right one. But this is no good for several reasons:

• You lose 1/32 point (up to a max of 2 points) every time you guess incorrectly and the bomb explodes.

• Every time you guess wrong, a message is sent to the bomblab server. You could very quickly saturate
the network with these messages, and cause the system administrators to come find you. . .

• We haven’t told you how long the strings are, nor have we told you what characters are in them. Even
if you made the (incorrect) assumptions that they all are less than 80 characters long and only contain
letters, then you will have 2680 guesses for each phase. This will take a very long time to run, and you
will not get the answer before the assignment is due—or the universe ends.

One thing you should be aware of: you do not need to use the debugger on every function. In particular,
do not attempt to analyze the scanf function; it would take you months! Here are some comments on
functions in the bomb:

main You have the source code for this. Don’t try to reverse-engineer it!

phasen These functions are where you should spend most of your time.

strings not equal It does what it says. You’ll have to figure out the details, though.

string length It does what it says. You’ll have to figure out the details, though.

2



read six numbers It does what it says. You’ll have to figure out the details, though.

sscanf This is a hugely complicated function. There is equally complicated documentation available
by typing “man scanf”, and you should read at least some it, including the “RETURN VALUE”
section (helpful hint: type a slash to search and “q” to quit the manual reader). But most of what you
need to know is that if scanf is given an argument containing "%d" it will parse a number and store
it somewhere; similarly "%c" will store a single character. There’s a bit more to it than that, so you’ll
need to look at the documentation, but %d and %c are what you should concentrate on.

Anything else You probably don’t need to understand how it works. If it has an obvious name (like
explode bomb) then that’s what it does. Ask for help if you’re not sure; don’t waste huge amounts
of time trying to figure out something that doesn’t matter!

There are many tools which are designed to help you figure out both how programs work, and what is
wrong when they don’t work. Here is a list of some of the tools you may find useful in analyzing your bomb,
and hints on how to use them.

• gdb

The GNU debugger is a command line tool available on virtually every platform. You can trace
through a program line by line, examine memory and registers, look at both the source code and
assembly code (we are not giving you the source code for most of your bomb), set breakpoints, set
memory watch points, and write scripts. Here are some tips for using gdb.

– To keep the bomb from blowing up every time you type in a wrong input, you’ll want to learn
how to set breakpoints.

– The CS:APP Student Site at

http://csapp.cs.cmu.edu/public/students.html

has a very handy single-page gdb summary that you can print out and use as a reference. Here
are some other tips for using gdb.

– For other documentation, type “help” at the gdb command prompt, or type “man gdb”, or
“info gdb” at a Unix prompt. Some people also like to run gdb under gdb-mode in emacs.

• objdump -t

This will print out the bomb’s symbol table. The symbol table includes the names of all functions and
global variables in the bomb, the names of all the functions the bomb calls, and their addresses. You
may learn something by looking at the function names!

• objdump -d

Use this to disassemble all of the code in the bomb. You can also just look at individual functions.
Reading the assembler code can tell you how the bomb works.

Although objdump -d gives you a lot of information, it doesn’t tell you the whole story. Calls to
system-level functions are displayed in a cryptic form. For example, a call to sscanf might appear
as:

8048c36: e8 99 fc ff ff call 80488d4 <_init+0x1a0>

3



To determine that the call was to sscanf, you would need to disassemble within gdb (possibly after
partially running the program).

• strings

This utility will display the printable strings in your bomb.

Looking for a particular tool? How about documentation? Don’t forget, the commands apropos, man,
and info are your friends. In particular, man ascii might come in useful. info gas will give you
more than you ever wanted to know about the GNU Assembler. Also, stay away from the web where there
may be posted solutions. If you get stumped, feel free to ask your grutor or professor for help.

One other useful fact: you will find that the bomb has many functions with descriptive names, such as
read six numbers. All functions do what their names say; Dr. Evil isn’t that evil. Also, remember that
sscanf is a built-in library function. Don’t try to reverse-engineer it unless you have several months to
spend; instead read the manual page.

4


