
Intro to Packet Classification

Arthi Padmanabhan
Oct 5, 2022

CS 181AG
Lecture 11



Reading: Named Data Networking



Questions from Monday?



Big Picture: Router Functionality

Input
ports

Output 
ports

Longest Matching 
Prefix to decide 
which output port

Switching: 
move packet to 
correct port



Big Picture: Router Functionality

Input
ports

Output 
ports

Schedule 
packets in 
output port 
queue



Big Picture: Router Functionality

• What if we need to look at parts of the packet beyond its destination, 
e.g., for a firewall?
• Today’s topic!



Firewalls

• For routers than sit at edge of network, 
important job is to screen incoming 
packets for anything malicious
• Works based on pre-established rules
• ex/ look at packet header and remove

packets that match certain threats
• ex/ let in packets only for certain 

applications OR packets that are 
responses to packets initiated from 
within network; otherwise drop



Fields for Screening

• Packets contain several parts to their headers that could be useful for
screening, including:
• Source/Dest IP – Who sent it? Who is it for?
• Source/Dest Port – What type of traffic is it?
• Flags – ex/ TCP ack: is it a response (acknowledgement) to a packet sent from 

within the network?



Firewall: Sample Database
• Assume: 
• Network is 1010*
• For simplicity, IPs shown as 8 bit
• M: 10101111; S: 01001010
• T1: 10101010; T0: 11110000

Destination Source Destination Port Source Port Flags Instruction

10101111 * 25 * * Allow

10101111 * 53 * UDP Allow

10101111 01001010 53 * * Allow

10101010 11110000 123 - 125 * UDP Allow

* 1010* * * * Allow

1010* * * * TCP ack Allow

* * * * * Block

In network
Out of network



DiffServe

• Some organizations require that their traffic not be subverted by high 
traffic sent by other organizations (Quality of Service (QoS) 
guarantees), e.g., voice is more sensitive to slow packets
• DiffServe – reserve bandwidth between source and destination



Treating Different Traffic Differently?

• Problem known as net neutrality: you will learn more about this in 
your reading



Big Picture: Router Functionality

Input
ports

Output 
ports

Longest Matching 
Prefix to decide which 
output port



Big Picture: Router Functionality

Input
ports

Output 
ports

Classify Packet, THEN
Longest Matching 
Prefix to decide which 
output port



Packet Classification Problem
• Rules have costs – we want to find the lowest cost rule that matches
• Makes sense to order rules by cost and find the first rule that matches

• Might have upwards of 1000 rules - similar to longest match prefix, 
this must be done quickly
• Depending on field, might be partial match, exact match, range match

Destination Source Destination Port Source Port Flags Instruction

10101111 * 25 * * Allow

10101111 * 53 * UDP Allow

10101111 01001010 53 * * Allow

10101010 11110000 123 - 125 * UDP Allow

* 1010* * * * Allow

1010* * * * TCP ack Allow

* * * * * Block

Cost

1

2

3

4

5

6

7



Which rule is the least-cost match?
• Packet with header: (D, S, DP, SP, F)
• (10101111, 01001010, 53, 64, -)
• (10101111, 01001010, 53, 64, UDP)
• (01010101, 10101011, 52, 65, TCP ack)
• (10101111, 01001111, 53, 64, -)

Destination Source Destination Port Source Port Flags Instruction

10101111 * 25 * * Allow

10101111 * 53 * UDP Allow

10101111 01001010 53 * * Allow

10101010 11110000 123 - 125 * UDP Allow

* 1010* * * * Allow

1010* * * * TCP ack Allow

* * * * * Block

Cost

1

2

3

4

5

6

7



Metrics

• Similar to prefix lookup:
• Lookup Time
• Memory
• Insertion/Deletion time: many firewall rules do not change often, but we 

might have dynamic rules, e.g., when a packet leaves, create a rule for its 
response



Simple Solutions

• Linear:
• Search through rules starting at least-cost

• Caching:
• Low cache hit rates (short flows)
• Could be combined with other methods



Two-Dimensional Schemes

• Let’s start by solving a simpler problem, having only 2 fields
• Notation: R1 -> apply Rule R1

Rule Destination Source

R1 D1 = 0* S1 = 10*

R2 D2 = 0* S2 = 01*

R3 D3 = 00* S3 = 11*

R4 D4 = 00* S4 = 1*

R5 D5 = 0* S5 = 1*

R6 D6 = 10* S6 = 1*

R7 D7 = * S7 = 00*

R8 D8 = * S8 = *



Two-Dimensional Schemes

• Why is this a “bad” set of rules?

Rule Destination Source

R1 D1 = 0* S1 = 10*

R2 D2 = 0* S2 = 01*

R3 D3 = 0* S3 = 1*

R4 D4 = 00* S4 = 1*

R5 D5 = 00* S5 = 11*

R6 D6 = 10* S6 = 1*

R7 D7 = * S7 = 00*

R8 D8 = * S8 = *



Two-Dimensional Schemes

Rule Destination Source

R1 D1 = 0* S1 = 10*

R2 D2 = 0* S2 = 01*

R3 D3 = 00* S3 = 11*

R4 D4 = 00* S4 = 1*

R5 D5 = 0* S5 = 1*

R6 D6 = 10* S6 = 1*

R7 D7 = * S7 = 00*

R8 D8 = * S8 = *



Trie of Tries

• Construct a trie of destination prefixes
• Each valid destination prefix (D) points to a trie of source prefixes
• The source trie contains source prefixes for all rules with a destination field 

exactly equal to D

• Problem?





Trie of Tries: Backtracking

• Construct a trie of destination prefixes
• Each valid destination prefix (D) points to a trie of source prefixes
• The source trie contains source prefixes for all rules with a destination field 

exactly equal to D

• Problem?
• Best rule might not be in the trie corresponding to longest matching 

destination
• For now, ignore the lookup time and find any solution that keeps trie as is
• Solution: use backtracking to traverse each source trie corresponding to a 

destination that’s a prefix of the longest matching destination



Trie of Tries: No Backtracking

• Construct a trie of destination prefixes
• Each valid destination prefix (D) points to a trie of source prefixes
• The source trie contains source prefixes for all rules where D matches the 

destination field
• That is, once we get to a source trie, we do not leave that trie

• Problem?





Trie of Tries: No Backtracking

• Construct a trie of destination prefixes
• Each valid destination prefix (D) points to a trie of source prefixes
• The source trie contains source prefixes for all rules where D matches the 

destination field
• That is, once we get to a source trie, we do not leave that trie

• Problem?
• Memory explosion


