CS 181AG Lecture 13

Packet Classification Cont.

Arthi Padmanabhan

Oct 12, 2022

Net Neutrality Discussion

Packet Classification Recap

- Grid of Tries
 - Backtracking algorithm -> high lookup time
 - All possible sources kept in source trie -> high memory
 - Switch pointers
- Geometrical View
- Bitmaps
- Today:
 - Finish bitmaps
 - Cross producting
 - Decision trees
 - Recent paper on using neural networks for packet classification

Divide and Conquer Algorithms

• Solve best match by field, then efficiently put results together

• Key observation: operations on bitmaps can be sped up by hardware

Rule	Destination	Source	Dest. Port	Src Port	Flags
R1	D1 = 0*	S1 = 10*	25	*	*
R2	D2 = 0*	S2 = 01*	25	123	*
R3	D3 = 00*	S3 = 11*	53	*	UDP
R4	D4 = 00*	S4 = 1*	*	*	*
R5	D5 = 0*	S5 = 1*	20	*	*
R6	D6 = 10*	S6 = 1*	*	*	TCP_ack
R7	D7 = *	S7 = 00*	*	*	UDP
R8	D8 = *	S8 = *	*	*	*

- Find least cost rule using bitmaps for the following (for simplicity, IPs will be 4 bits):
 - (0001, 0011, 53, 35, UDP)
 - (0111, 1011, 25, 30, -)

Bitmap

Dst

0*

00*

10*

*

• (0011, 1000, 20, 30, UDP)

Src	Bitmap	Dst
10*		Port
01*		25
11*		53
1*		20
_		*
00*		
*		

Dst Port	Bitmap
25	
53	
20	
*	

Src Port	Bitmap
123	
*	

Flags	Bitmap
UDP	
TCP_ ack	
*	

- Find least cost rule using bitmaps for the following (for simplicity, IPs will be 4 bits):
 - (0001, 0011, 53, 35, UDP) R7
 - (0111, 1011, 25, 30, -) R1

Dst

0*

00*

10*

*

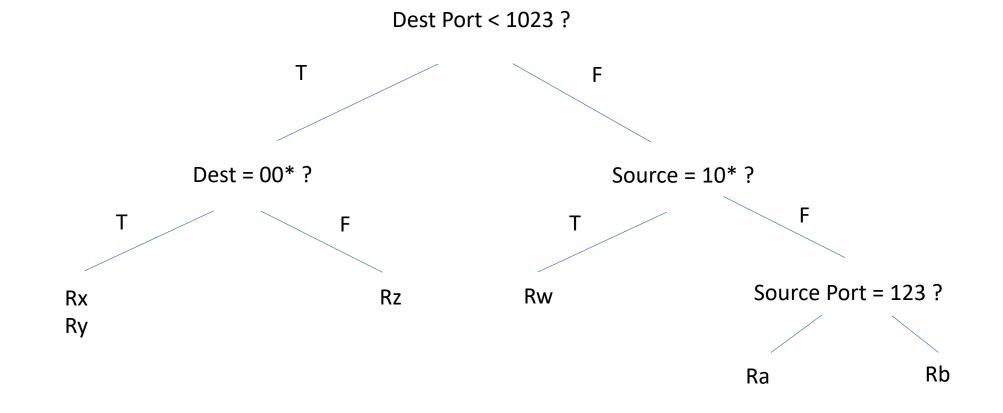
• (0011, 1000, 20, 30, UDP) - R4

Bitmap	Src	Bitmap	Dst
11001011	10*	10011101	Port
11111011	01*	01000001	25
00000111	11*	00111101	53
00000011	1*	00011101	20
	00*	00000011	*

00000001

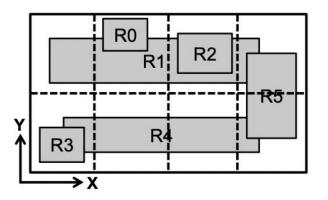
Dst Port	Bitmap
25	11010111
53	00110111
20	00011111
*	00010111

Src Port	Bitmap
123	11111111
*	10111111


Flags	Bitmap
UDP	11111011
TCP_ ack	11011101
*	11011001

- Does require linear search
 - Summary bits can help, but still requires linear search of summary bits

Rule	Destination	Source	Dest. Port	Src Port	Flags
R1	D1 = 0*	S1 = 10*	25	*	*
R2	D2 = 0*	S2 = 01*	25	123	*
R3	D3 = 00*	S3 = 11*	53	*	UDP
R4	D4 = 00*	S4 = 1*	*	*	*
R5	D5 = 0*	S5 = 1*	20	*	*
R6	D6 = 10*	S6 = 1*	*	*	TCP_ack
R7	D7 = *	S7 = 00*	*	*	UDP
R8	D8 = *	S8 = *	*	*	*


Decision Trees

• Consider grid of tries. Why look at all bits of one field before looking at any others?

Decision Trees

• Consider grid of tries. Why look at all bits of one field before looking at any others?

NeuroCuts (SIGCOMM 2019)

• Reinforcement Learning approach to packet classification

Problem

- What problem does the paper solve?
 - Current approaches to constructing decision trees rely on hand-tuned heuristics, which doesn't scale well

NN a good fit?

- To do classification?
- To build decision trees?

Reinforcement Learning

- Concerned with how intelligent agents should take action to maximize cumulative reward
- Agent sees environment and current reward
- Well-suited for problems where there is a long-term payoff over a series of actions

Reinforcement Learning for Packet Classification

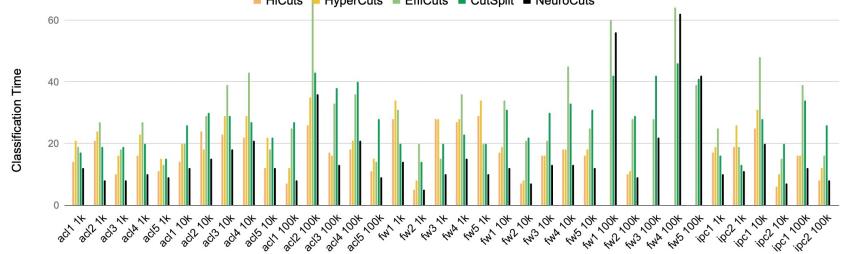
- Environment: current decision tree
- Reward: classification time, memory footprint, or combination

Why is RL a good fit?

- Rewards are delayed we don't know if it's a good decision tree until we finish building it
- There are clear metrics to maximize
- Can cheaply build huge number of samples (use software, run in parallel)

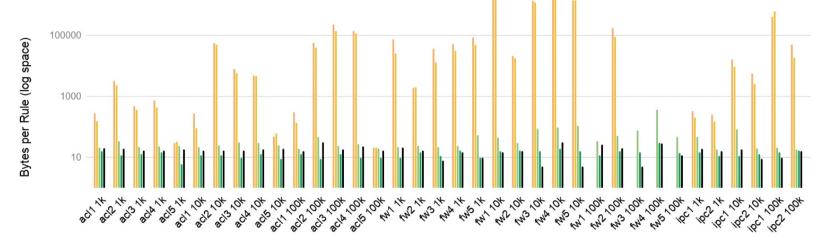
NeuroCuts Design

- Possible decisions are to cut the search space along a particular axis (e.g., source, destination port, etc.)
- All possible decisions are advertised to agent
- Agent starts with a naïve policy and learns through multiple rollouts (multiple iterations of building tree and seeing reward) and updates its policy over time until it is satisfied with the reward


Details

- When making a decision at a particular node, state only involves that node, rather than entire tree
- By induction, if each subtree is optimized, the whole tree is optimized

Training


- Usually converges within a few hundred rollouts
- Larger rule set = larger time per rollout, but not larger number of rollouts

Evaluation

HiCuts HyperCuts EffiCuts CutSplit NeuroCuts

Reminder: Upcoming Schedule

- 10/10, 10/12: Finish packet classification
- 10/17-10/18: Fall break!
 - No assignment due week of fall break
- 10/19: Start new topic (switching)
- 10/24: Midterm Review in class
 - No assignment due week of midterm
- 10/25 10/30: Midterm (no class 10/26)
 - No assignment due right after midterm
- Assignment 7 due Nov. 7 (Monday)