
Switching

Arthi Padmanabhan
Oct 31, 2022

CS 181AG
Lecture 16



Upcoming Schedule

• Assignment 7 goes out Wednesday as usual, due next Wednesday
10pm (but please do reading before Wednesday’s class)



Big Picture: Router Functionality

Input 
ports

Output 
ports

Longest Matching Prefix to 
decide which output port, 
Packet Classification to 
decide matching rule for 
packet

Switching: 
move packet to 
correct port



Big Picture: Router Functionality

Input 
ports

Output 
ports

Schedule 
packets in 
output port 
queue



Switching

• Once router knows where a packet needs to go, it must physically 
move the packet to the correct output link



Simple Solution: Shared Memory Switch

• Each packet is read into memory and then read out of memory. Then
the same is done for the next packet, etc

Bus

CPU

Input 1

Input 2

Input N

…

Problem:
- A single (general purpose) 

CPU is too slow



Shared Memory Switch with Multiple CPUS

• Use multiple CPUs to alleviate load on single CPU

Bus

CPU 1

…

Problem:
- Packet still traverses bus twice 

– once to get to CPU, once to 
get back

- Bus: higher load -> lower
speedCPU 2

CPU M

…

Input 1

Input 2

Input N



Crossbar Switch

• Each input is connected to each output
• Connection is a transistor

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N



Crossbar Switch: Constraints

• Output should be connected to no more than one input
• Inputs can be connected to more than one output though
• Packets going to the same output should arrive at the output in the 

correct order



Crossbar Switch

• Best case: maximum parallelization -> 
N fold speedup (packets divided into 
cells)
• Requires finding N disjoint input-

output pairs
• Why is this hard?

• Several inputs may want to send to the 
same output at the same time

• There may be outputs with no inputs 
wanting to send to them

• Could be reduced to bipartite 
matching problem (yay more algs
class!)
• All known bipartite matching algorithms 

are too slow in the context of switching 
packets

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N



Example: Grocery Store

Grocery aisles

Entrance

Checkout area Customer Service

We need buffering, 
place people can wait 
before getting served



Crossbar Switch: Output queues

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N

Add output queues to 
hold packets. Packets 
wait here until output 
port is ready to send 



Example: Grocery Store

Grocery aisles

Entrance

Checkout area Customer Service

We also need buffering 
at the store entrance 
because processing 
(shopping) can be 
slower than input rate



Crossbar Switch: Input Queues

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N

Add input queues to 
temporarily hold 
received packets until 
they can be processed
and output queue has 
free slot



Crossbar Switch: Putting it together

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N

Performs longest 
matching prefix 
and finds that 
packet should go to 
output 2



Crossbar Switch: Putting it together

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N

Packet remains 
queued until input 
queue empties 
and output queue 
2 has free slots



Crossbar Switch: Putting it together

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N

Packet remains 
queued until 
output is available 
to send



Take-a-Ticket

• How does input port know when to send the front element of its 
queue?
• Works like deli counter: each input R ”takes a ticket” for the output S 

at the front of its queue. S then calls out the ticket number it’s
serving. When R hears its number, it sends the packet to S
• Requests, calling out numbers happens on separate control bus (very

light load)



Example



Example (cont.)

• How many more rounds are needed?
• Draw out any remaining rounds



Example (cont)



Head of Line Blocking

• What would have been the optimal number of rounds?



Example: Grocery Store

Grocery aisles

Entrance

Checkout area Customer Service

Waiting for free spot in 
customer service, so nobody 
else can get in



Avoiding HOL Blocking

• One proposal – queue only at output 
• Requires fabric to run N times faster than input link (where N is 

number of input links)
• If k is small, can be realized with k parallel buses
• Can be very expensive



Avoiding HOL Blocking: Virtual Output Queues

• Keep separate queue for each 
output

…

Input 1
Input 2

Input N

Output 
1

Output 
2

Output 
N



Avoiding HOL Blocking: Virtual Output Queues

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N

…

…

…

• Keep separate queue for 
each output
• Can make progress on each 

output queue separately
• Can express request to all 

ports in one bitmap



Avoiding HOL Blocking: Virtual Output Queues 
+ Parallel Iterative Matching

…

Input 1

Input 2

Input N

Output 
1

Output 
2

Output 
N

…

…

…

• Keep separate queue for 
each output
• Can make progress on each 

output queue separately
• Can express request to all 

ports in one bitmap



Parallel Iterative Matching



Parallel Iterative Matching



Avoiding Randomness

• Why avoid randomness?
• Hard to generate random numbers fast enough
• Multiple iterations to attain maximal matches



iSLIP

• In each step that involves choosing (Grant and Accept), choose 
winner in round robin manner using a rotating pointer
• Each output keeps a grant pointer, g, initialized to first input. When it 

has to choose which input to grant to, it chooses the input with
lowest port number that is greater than or equal to g
• After accept phase, if output port was matched with input X, grant 

pointer is at (X+1) mod (number of input ports)
• Input ports each keep an accept pointer that works in the same way



iSLIP Example

• Which input’s request does output 2 grant?
• Output 4?

1

2

3

A

B

C
4

g = B

g = C
a = 1

a = 2

a = 1 g = A

g = A



iSLIP Example

• Which output’s grant does C accept?

1

2

3

A

B

C
4

g = B

g = C
a = 1

a = 2

a = 1 g = A

g = A



2nd Iteration?

• Which inputs would send where in a 2nd iteration?

1

2

3

A

B

C
4

g = B

g = C
a = 1

a = 2

a = 1 g = A

g = A



2nd Iteration?

• Which inputs would send where in a 2nd iteration?

1

2

3

A

B

C
4

g = B

g = C
a = 1

a = 2

a = 1 g = A

g = A



2nd Iteration

1

2

3

A

B

C
4

g = B

g = C
a = 1

a = 2

a = 1 g = A

g = A



2nd Iteration
• Note: grant/accept pointers only increment after 1st iteration
• Where would grant/accept pointers be after this round?

1

2

3

A

B

C
4

g = B

g = C
a = 1

a = 2

a = 1 g = A

g = A



2nd Iteration

1

2

3

A

B

C
4

g = A

g = C
a = 3

a = 2

a = 1 g = A

g = A



iSLIP Round 1



iSLIP Remaining Rounds



iSLIP Advantages

• Avoids HOL blocking
• Rotating priority provides long-term fairness (pointers are 

synchronized at the beginning but long-term lack of 
synchronization provides performance improvement)



Recap

• Switching is the process of physically moving packets from input to 
output ports
• Using a crossbar switch, N-fold speedup is possible, but finding N 

disjoing input-output pairs is difficult
• Take-a-Ticket system provides communication protocol between 

inputs/outputs, but is subject to Head-of-Line Blocking
• Parallel Iterative Matching (PIM) avoid HOL blocking by using virtual 

output queus (VOQs) and randomization
• iSLIP removes randomization from PIM by introducing concept of 

rotating priority


