
TCP

Arthi Padmanabhan
Nov 7, 2022

CS 181AG
Lecture 18



Assignment Clarifications/Hints

• Problem 1:
• Requests are the same for the first iteration of each round, not between 

iterations. You can still just draw grant and accept, but people have found it 
helpful to draw all three for each iteration – you may do that if it helps you

• Problem 3:
• See note about ack=1
• Assume 1 ack per data packet
• I’ve shown the first packet getting sent and an ack being received. That 

doesn’t mean the sender can’t send other packets before receiving that first 
ack (since size=1 and window size = 3)



Time
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

seq = 0

ack = 1



Announcements

• No office hours this Friday
• Assignment 8 will not be the typical problem set and will be modified 

such that not having access to me is fair to you



Recap

• TCP is responsible for chopping up data into packets, sending them 
across the network, and dealing with out of order arrivals and lost 
packets
• Lost packets happen because routers’ buffers fill up
• Different TCP connections are identified using port numbers
• Selective Repeat ARQ (Automatic Repeat Request) uses sequence 

numbers and acks to determine which packet(s) to resend



TCP Header

• Src port 
• Dst port
• Seq number
• Ack number
• Header length
• Reserved bits



TCP Header (cont.)

• 9 flags:
• Nonce, CWR, ECN-echo -> used for congestion control
• Urgent – not used anymore
• Ack: this packet contains valid ack info
• Psh: immediately push to app (don’t buffer)
• Rst: abort connection; abnormal condition
• Syn: used for connection setup
• Fin: used for connection tear down



TCP Header (cont.)

• Window size
• Checksum
• Optional:
• Max packet size
• Window scale



UDP Header

• UDP is for simple communication that needs speed (it is preferrable 
that a packet gets lost than retransmitted)
• Src port
• Dst port
• Length (total length of packet)
• Checksum 



Starting a TCP Session
Node A Node B

Hello!

Hello back!

How are you?

I’m fine. How are you?

I’m fine

DATA EXCHANGE

I have to go. Goodbye!

Goodbye



Starting a TCP Session (3-way handshake)
Client Server 1) Server creates a  

connection and binds 
to port/address



Starting a TCP Session (3-way handshake)
Client Server

SYN , seq = 0

1) Server creates a 
connection and binds 
to port/address

2) Client initiates a 
connection by sending 
TCP packet to server 
with SYN flag and 
initial seq number



Starting a TCP Session (3-way handshake)
Client Server

SYN, seq = 0

1) Server creates a connection 
and binds to port/address

2) Client initiates a connection 
by sending TCP packet to 
server with SYN flag and 
initial seq number

3) Server receives packet, 
sends back SYN/ACK with 
its own initial seq number 
and ack for clients initial 
seq number

SYN/ACK, seq = 0, ack=1

By convention, 
SYN packets 
have size 1 byte



Starting a TCP Session (3-way handshake)
Client Server

SYN, seq = 0

4) Client receives SYN/ACK and 
sends back packet with ack set 

SYN/ACK, seq = 0, ack=1

ACK, seq=1, ack=1



Starting a TCP Session (3-way handshake)
Client Server

SYN, seq = 0

4) Client receives SYN/ACK and 
sends back packet with ack set
5) Server receives the ACK 
packet. Connection is 
established 

SYN/ACK, seq = 0, ack=1

ACK, seq=1, ack=1



Data Exchange
Client Server

SYN, seq = 0

4) Client receives SYN/ACK and 
sends back packet with ack set
5) Server receives the ACK 
packet. Connection is 
established
6) Data exchange 

SYN/ACK, seq = 0, ack=1

ACK, seq=1, ack=1“Name?”, seq= ?, ack=?, size=6

“Bob”, seq=?, ack=?, size=4

“Got it”, seq= ?, ack=?, size=7



Data Exchange
Client Server

SYN, seq = 0

4) Client receives SYN/ACK and 
sends back packet with ack set
5) Server receives the ACK 
packet. Connection is 
established
6) Data exchange 

SYN/ACK, seq = 0, ack=1

ACK, seq=1, ack=1“Name?”, seq= 1, ack=1, size=6

“Bob”, seq=1, ack=7, size=4

“Got it”, seq= 7, ack=5, size=7

Note: a packet that 
just contains an ack 
has a size of 0 bytes, 
hence the next 
packet after ack also 
has seq = 1



Data Exchange
Client Server

SYN, seq = 0

SYN/ACK, seq = 0, ack=1

ACK, seq=1, ack=1“Name?”, seq= 1, ack=1, size=6

“Bob”, seq=1, ack=7, size=4

“Got it”, seq= 7, ack=5, size=7

ACK, seq=5, ack=14



Data Exchange
Client Server

SYN, seq = 0

SYN/ACK, seq = 0, ack=1

ACK, seq=1, ack=1“Name?”, seq= 1, ack=1, size=6

“Bob”, seq=1, ack=7, size=4

“Got it”, seq= 7, ack=5, size=7

ACK, seq=5, ack=14

Notice that this packet both 
sends data and acknowledges 
the receipt of data. ACKs are 
usually “piggybacked”. Where 
else in this exchange could an 
ACK have been piggybacked?



Data Exchange
Client Server

SYN, seq = 0

SYN/ACK, seq = 0, ack=1

“Name?”, seq= 1, ack=1, size=6

“Bob”, seq=1, ack=7, size=4

“Got it”, seq= 7, ack=5, size=7

ACK, seq=5, ack=14

The 3-way handshake 
requires an ack here, but this 
could also be piggybacked 
with data. This packet both 
sends data and acknowledges 
receipt of the SYN-ACK



Connection Tear Down
Client Server

FIN/ACK, seq = 14, ack= 5

7) Client sends packet to server 
with FIN/ACK flags set



Connection Tear Down
Client Server

FIN/ACK, seq = 14, ack= 5

7) Client sends packet to server 
with FIN/ACK flags set
8) Server receives FIN packet 
and responds with ACKACK, seq = 5, ack=15

By convention, 
FIN packets have 
size 1 byte



Connection Tear Down
Client Server

FIN/ACK, seq = 14, ack= 5

7) Client sends packet to server 
with FIN/ACK flags set
8) Server receives FIN packet 
and responds with ACK
9) Client receives ACK, says 
nothing
10) Server sends FIN,ACK

ACK, seq = 5, ack=15

FIN/ACK, seq = 5, ack=15



Connection Tear Down
Client Server

FIN/ACK, seq = 14, ack= 5

7) Client sends packet to server 
with FIN/ACK flags set
8) Server receives FIN packet 
and responds with ACK
9) Client receives ACK, says 
nothing
10) Server sends FIN/ACK
11) Client receives FIN/ACK and 
sends ACK

ACK, seq = 5, ack=15

FIN/ACK, seq = 5, ack=15

ACK, seq = 15, ack= 6



Connection Tear Down
Client Server

FIN/ACK, seq = 14, ack= 5

7) Client sends packet to server 
with FIN/ACK flags set
8) Server receives FIN packet and 
responds with ACK
9) Client receives ACK, says nothing
10) Server sends FIN/ACK
11) Client receives FIN/ACK and 
sends ACK
12) Server receives ACK and closes 
connection
13) When timer expires, client also 
transitions to closed

ACK, seq = 5, ack=15

FIN/ACK, seq = 5, ack=15

ACK, seq = 15, ack= 6



Congestion Control

• Expected time to receive a packet = RTT (determined initially by 3-
way handshake)
• Window size controls sending rate
• Additive Increase, Multiplicative Decrease (AIMD)

Node 1
Data

Response

Node 2

RTT



Fast Retransmit

• Three duplicate acks = something is missing but congestion isn’t that 
bad because some packets are getting through
• Timeout = no packets are getting through, bad congestion



Summary

• TCP connection is started with 3-way handshake
• TCP connection is ended with 4-way handshake
• TCP congestion control uses AIMD to determine sending rate
• Congestion can be detected by three duplicate acks OR timeout


