CS 181AG Lecture 20

## Output Scheduling (cont.)

Arthi Padmanabhan
Nov 21, 2022

## Recap

- Within each output queue, there are several flows (set of packets that take the same path through whole network)
- RED discards packets before they are placed in the output queue if the running average of queue length > threshold. Why?
- Sometimes we need a way of controlling long-term rate and maximum burst size for a flow -> token bucket algorithm



## Token Bucket Shaping

- Goal: for a particular flow, limit 1) the long-term rate of sending and 2) the maximum burst size
- Why: we might need to limit the amount of news traffic, or UDP traffic


## Token Bucket Example

$\mathrm{r}=2 \mathrm{Mbps}$<br>$\mathrm{b}=5 \mathrm{Mb}$<br>1 token $=1 \mathrm{Mb}$



Token Bucket


Buffer

## Token Bucket Example



Token Bucket
Buffer

## Token Bucket Example

$$
\begin{aligned}
& r=2 \mathrm{Mbps} \\
& \mathrm{~b}=5 \mathrm{Mb} \\
& 1 \text { token }=1 \mathrm{Mb}
\end{aligned}
$$



Token Bucket


Buffer

$$
t=0
$$

## Token Bucket Example

$$
\begin{aligned}
& r=2 \mathrm{Mbps} \\
& \mathrm{~b}=5 \mathrm{Mb} \\
& 1 \text { token }=1 \mathrm{Mb}
\end{aligned}
$$



Token Bucket


Buffer

## Token Bucket Example

$$
\begin{aligned}
& r=2 \mathrm{Mbps} \\
& \mathrm{~b}=5 \mathrm{Mb} \\
& 1 \text { token }=1 \mathrm{Mb}
\end{aligned}
$$



Token Bucket


Buffer

## Token Bucket Example

$$
\begin{aligned}
& r=2 \mathrm{Mbps} \\
& \mathrm{~b}=5 \mathrm{Mb} \\
& 1 \text { token }=1 \mathrm{Mb}
\end{aligned}
$$



Token Bucket


Buffer

$$
t=2
$$

## Token Bucket Example

$\mathrm{r}=2 \mathrm{Mbps}$<br>$\mathrm{b}=5 \mathrm{Mb}$<br>1 token $=1 \mathrm{Mb}$



Token Bucket


Buffer

$$
t=2
$$

## Token Bucket Example

$\mathrm{r}=2 \mathrm{Mbps}$<br>$\mathrm{b}=5 \mathrm{Mb}$<br>1 token $=1 \mathrm{Mb}$



Token Bucket


Buffer

## Token Bucket Example

$\mathrm{r}=2 \mathrm{Mbps}$<br>$\mathrm{b}=5 \mathrm{Mb}$<br>1 token $=1 \mathrm{Mb}$



Token Bucket


Buffer

## Token Bucket Example

$$
\begin{aligned}
& r=2 \mathrm{Mbps} \\
& \mathrm{~b}=5 \mathrm{Mb} \\
& 1 \text { token }=1 \mathrm{Mb}
\end{aligned}
$$



Token Bucket

$t=4$

## Token Bucket Example

$$
\begin{aligned}
& r=2 \mathrm{Mbps} \\
& \mathrm{~b}=5 \mathrm{Mb} \\
& 1 \text { token }=1 \mathrm{Mb}
\end{aligned}
$$



Token Bucket


Buffer

## Token Bucket Example

$$
\begin{aligned}
& r=2 \mathrm{Mbps} \\
& \mathrm{~b}=5 \mathrm{Mb} \\
& 1 \text { token }=1 \mathrm{Mb}
\end{aligned}
$$



Token Bucket


Buffer

## Token Bucket Per Flow

- So far, we have considered token bucket algorithm per flow



## Token Bucket: One Buffer?

- What would be the issue if we kept all flows in the same buffer?



## Token Bucket: One Buffer?

- What would be the issue if we kept all flows in the same buffer?


```
2
```

- Waiting for one packet to get enough tokens could block other flows that are able to send
- Solution: drop any packet that has insufficient tokens to send


## Token Bucket Shaping vs Policing

- Shaping: one buffer per flow in the output queue; if there are insufficient tokens to send packet at head of buffer, wait
- Policing: one buffer for all packets in the output queue; if there are insufficient tokens to send packet at head of buffer, drop (still keep 1 token bucket per flow)


## Token Bucket Policing Example

- It takes one unit of time to look at the head of the buffer and decide what to do with it
- Two tokens are added at each time slot and may be used in the same time slot they are added. Token bucket can hold max 8
- Show the head of the buffer and the token count in each bucket at the start of each time step

| Size: 2 <br> Flow: 2 | Size: 3 <br> Flow: 1 | Size: 4 <br> Flow: 1 | Size: 4 <br> Flow: 2 | Size: 6 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Flow: 2 |  |  |  |  |

## Handling Multiple Flows

- In the case where we have multiple flows and we wait, how do we decide which flow to send from?



## Deficit Round Robin

Salary $=1$ token

Cycle 1
1


## Deficit Round Robin



## Deficit Round Robin

- Keep buffer and token bucket per flow and round robin, sending as many packets as possible each turn
- Each bucket gets a "salary," or an amount put in on each cycle of the round robin

