CS 181AG

Lecture 3

LAN Extensions

Arthi Padmanabhan
Sep 7, 2022

Last Time

- How do multiple nodes share a single wire?

Today

- Last time: How do multiple nodes share a single wire?
- This time: moving beyond one wire
- How do we extend LANs to support more nodes?

Limitations of One Wire

- Signal can travel limited distance
- More hosts = more collisions

Simplest Solution

- Repeater: Physical layer device that repeats/amplifies the signal to the other wire
- Hub: repeater that can connect more than 2 wires

Simplest Solution: Repeaters/Hubs

- Repeater/Hub: Physical layer device that repeats/amplifies the signal to the other wire(s)

Message comes in on one port, hub simply forwards on all the others

Can we make it smarter?

- Store and forward capability!

Bridge

- Store and forward device that buffers entire packet before sending
- Uses CSMA/CD (acts like a host) on each LAN

Bridges

- Store and forward device that buffers entire packet before sending
- Uses CSMA/CD (acts like a host) on each LAN
- Key value add: selective forwarding
- If A sends to J, flood the message to LAN 2
- If A sends message to B, message does not need to be flooded to LAN 2
- How does bridge know where each destination resides?

Learning Bridges

- Configuring locations of each address by hand is slow and inflexible
- Instead, learn through the source address where each address resides

Learning Bridges

- Configuring locations of each address by hand is slow and inflexible
- Instead, learn through the source address where each address resides

Learning Bridges

- Configuring locations of each address by hand is slow and inflexible
- Instead, learn through the source address where each address resides

Learning Bridges

- Configuring locations of each address by hand is slow and inflexible
- Instead, learn through the source address where each address resides

Learning Bridges

- Configuring locations of each address by hand is slow and inflexible
- Instead, learn through the source address where each address resides

Network Topology

Multiport Bridge

- Learning works the same way over multiple ports

Multiport Bridge

- Learning works the same way over multiple ports

Multiport Bridge

- Learning works the same way over multiple ports

Multiport Bridge

- Learning works the same way over multiple ports

Multiport Bridge

- Learning works the same way over multiple ports

Multiport Bridge

- Learning works the same way over multiple ports

Practice Problem

- List all the nodes that hear each of the following messages. Assume all forwarding bases start empty

1. A sends to $B \quad 4) \mathrm{J}$ sends to H
2. J sends to B
5) G sends to H
3. H sends to A.
6) A sends to G

Cycles

- What happens if a cycle is added?

Cycles

- What happens if a cycle is added?

Cycles

- What happens if a cycle is added?

Cycles

- What happens if a cycle is added?

Cycles

- What happens if a cycle is added?

Cycles

- What happens if a cycle is added?

Cycles

- What happens if a cycle is added?

Cycles

- What happens if a cycle is added?
- Broadcast storm!
- How do we solve it?
- Turn off some bridges' ports - Spanning Tree Protocol

Spanning Tree Protocol

- Spanning tree uses a subset of bridge ports so there are no cycles

Spanning Tree Protocol

1) Elect a root (lowest Bridge ID)
2) Find root ports
3) Select one designated port (DP) per segment
4) Block all remaining ports

Spanning Tree Protocol

1) Elect a root (lowest Bridge ID)

- Bridge ID: priority and MAC address

2) Find root ports along shortest paths to root, breaking ties with MAC address of next bridge
3) Select one designated port (DP) per segment

- If one side is root port, other is designated port
- Otherwise, choose one DP and one ND based on same criteria (shortest path, break ties with lowest MAC address)

4) Block all non-designated ports

Spanning Tree Protocol

- Spanning tree uses a subset of bridge ports so there are no cycles

Practice Problem

- Label all ports according to STP rules and decide which ports to turn off

Distributed Communication Details

- Each bridge sends messages (BPDUs) to all others that it's connected to:
- "I am Bridge B6, the root bridge is B1, and I'm 1 hop away"
- (B6, B1, 1)

Distributed Communication Details

- Each bridge starts by thinking it's the root

Distributed Communication Details

- Each bridge starts by thinking it's the root

Distributed Communication Details

- Each bridge starts by thinking it's the root
- Each bridge updates route/Root upon receiving others' messages

1. Better root
2. Lower cost to get there
3. MAC address

Distributed Communication Details

- Each bridge starts by thinking it's the root
- Each bridge updates route/Root upon receiving others' messages

Me	Root	Hops
B1	B1	0

Distributed Communication Details

- Each bridge starts by thinking it's the root
- Each bridge updates route/Root upon receiving others' messages
- Rebroadcast only to the nonroot ports where we're best

Me	Root	Hops
B1	B1	0

Distributed Communication Details

- Each bridge starts by thinking it's the root
- Each bridge updates route/Root upon receiving others' messages
- Rebroadcast only to the nonroot ports where we're best turn off others

Switched Ethernet

- Ethernet now works in a point-to-point manner - nodes directly connects to bridge
- Switch (conceptually interchangeable with bridge) forwards packets to the correct port, and only one host resides at that port
- Switch supports parallel forwarding (A can send to B while B sends to A)
- No need for shared medium access (CSMA, etc) anymore

VLANs

- Create virtual LANs to group certain nodes together
- Efficient if you want to send to the same group of nodes consistently
- Ex/ computer science and physics departments are on the same LAN

Spanning Tree Protocol

Spanning Tree Protocol

