
Routing Protocols: Link-State

Arthi Padmanabhan
Sep 19, 2022

CS 181AG
Lecture 6

Recap:

• Routing protocols can be categorized as distance vector and link state
• In distance vector, each router keeps and send out an estimate of how

far it is from other routers
• Distance Vector is used to route between different Autonomous

Systems using BGP (Border Gateway Protocol)
• In link state, each router keeps the full topology -> subject of today!

Today

• Reminder about Distance-Vector
• Spanning Tree Protocol
• Link-State Protocol

Reminder about Distance-Vector

• Bellman Ford: D(x,y) = min{c(x,v) + D(v, y)} for all neighbors v

A

B D

C E

6

1

3

4

1

13

Dst Cost Next
hop

A 0 -

B 6 B

C 1 C

D ∞ -

E ∞ -

Dst Cost Next
hop

A 6 A

B 0 -

C 3 C

D 4 D

E ∞ -

Dst Cost Next
hop

A 1 A

B 3 B

C 0 -

D ∞ -

E 13 E

A B C

Spanning Tree Protocol

• Concepts:
• Root Bridge: Bridge with the lowest bridge ID
• Root Port: Each bridge has a root port which identifies the next hop from the

bridge to the root
• Designated Port: Each LAN has a designated port to which all traffic

generated on the LAN should go to get to the root

Steps of Spanning Tree Protocol

• Bridges send out messages that contain the following information:
Me Root Hops

Ordering of Messages

• We say that M1 advertises a better path than M2 if:
• Bw < Bv
• OR (Bw = Bv) AND (Cx < Cy)
• OR (Bw = Bv) AND (Cx = Cy) AND (Bx < By)

Me Root Hops

Bx Bw Cx

Me Root Hops

By Bv Cy

M1 M2

Spanning Tree Protocol Update
• Initially, each node assumes it is the root. Each node x sends (Bx, Bx, 0) to

its neighbors
• Each node sees all messages from its neighbors in previous rounds and

asks:
1. From which port have I heard the best message?

a) This is my root port
b) Update my message accordingly: If I, Bw, think the root is Bx and I then learn

about a new better root from a neighbor, (e.g., (Bz, By, c) where By < Bx, I update
my message to (Bw, By, c+1)). However, I don’t necessarily send it to all neighbors

Spanning Tree Protocol Update
• Initially, each node assumes it is the root. Each node x sends (Bx, Bx, 0) to

its neighbors
• Each node sees all messages from its neighbors in previous rounds and

asks:
1. From which port have I heard the best message?

a) This is my root port
b) Update my message accordingly: If I, Bw, think the root is Bx and I then learn

about a new better root from a neighbor, (e.g., (Bz, By, c) where By < Bx, I update
my message to (Bw, By, c+1)). However, I don’t necessarily send it to all neighbors

2. Which ports have not sent any messages that are better than my
current message? Send my message only to these ports

Spanning Tree Protocol: Selecting Ports
• If after convergence, Bx is sending update messages along port p, port p is

the designated port for the LAN
• Then Bx can select which ports are in the spanning tree:
• Bx’s root port is in the spanning tree
• All of Bx’s designated ports are in the spanning tree
• All other ports are not part of the spanning tree

• Bx’s ports that are in the spanning tree will forward packets (=forwarding
state)
• Bx’s ports that are not in the spanning tree will not forward packet

(=blocking state)

Assignment Problem

B2

B1

B3

B5
B7

B6 B4

Intra-Domain Routing

• For connectivity within autonomous systems
• Doesn’t have to be as scalable
• Don’t have to worry about trust

Link-State Phases

• Two phases:
1. Tell all routers what you know about your local topology
2. Path calculation (Dijkstra’s)

• Motivation
• Global information allows optimal route calculation
• Straightforward to implement and verify

Phase 1

• Tell your neighbors what you know about topology
• “I am X, I am connected to Y and Z with these costs”
• Send periodically or if any links change

Phase 2

• Compute shortest path with Dijkstra’s algorithm

Notation

• cab = cost of direct link from a to b
• Dab = current cost estimate of least-cost-path from a to b
• N = set of nodes whose least cost path is definitively known
• Q = set of nodes whose least cost path is not definitely known

Initialization

1. N = {a}

2. for all nodes b:

3. if b adjacent to a: // u initially only knows its neighbors

4. Dab = cab // but might not know minimum cost path to them

5. else:

6. Dab = ∞

Loop

1. N = {a}

2. for all nodes b:

3. if b adjacent to a: // u initially only knows its neighbors

4. Dab = cab // but might not know minimum cost path to them

5. else:

6. Dab = ∞

7. Loop – while Q != ∅:

8. Find c in Q such that Dac is a minimum add to N

9. Move c from Q to N

10. Update Daf for all f in Q, adjacent to c: Daf = min{Daf, Dac + ccf}

Dijkstra’s: Example

u

v

x

w

y

z

2

2

21
1

1

3

3

5

5

Step N Q v w x y z

0 {u} {vwxyz} 2, u 5, u 1, u ∞ ∞

1

2

3

4

5

Dijkstra’s: Example

u

v

x

w

y

z

2

2

21
1

1

3

3

5

5

Step N Q v w x y z

0 {u} {vwxyz} 2, u 5, u 1, u ∞ ∞

1

2

3

4

5

Dijkstra’s: Example 2

u

x

w

v

y z

Link State Changes

• What happens if y knows about broken link and recalculates its path
before x?
• Temporary loop
• In link-state protocols, these tend to be very short-lived
• Errors do not propagate

u

v

x

w

y

z

2

2

21
1

1

3

3

5

5

Next Time

• So far, we have focused on how to populate FIB
• Next time, we’ll look at how to quickly look up FIB to send packets at

wire speed
• Next time = Monday; Wednesday will be a current-topics lecture

Feedback

• How much does each of the following help your understanding?
• Lectures

• Slides
• Problems/activities during lecture

• Working with classmates outside out class
• Office hours
• Assignments

• If the exam resembled assignments (minus coding), would you feel
confident? What would make you feel more confident?
• Anything else in the course that’s working or not working for you?

