
Intro to Prefix Lookup

Arthi Padmanabhan
Sep 26, 2022

CS 181AG
Lecture 8



Recap

• Putting it together:
• We first learned about local networks (expanded by bridges)



Putting It Together

A

B

C

D

E F

G

H

I

J
B1



Putting It Together

B2

B1

B3

A

B

C

D



Putting It Together



Recap

• Putting it together:
• We first learned about local networks (expanded by bridges)
• To connect different local networks, we need routers, which forward based 

on IP addresses



Putting It Together

192.16.1.11

192.16.1.22

192.16.2.44

192.16.2.55

192.16.2.66192.16.1.33



Putting It Together

192.16.1.11

192.16.1.22

192.16.2.44

192.16.2.55

192.16.2.66

192.16.1.0/24 192.16.2.0/24

192.16.1.33



Putting It Together

.11

.22

.33

192.16.1.0/24

.44

.55

.66

192.16.2.0/24



Recap

• Putting it together:
• We first learned about local networks (expanded by bridges)
• To connect different local networks, we need routers, which forward based 

on IP addresses
• Routing Protocols determine how to populate the Forwarding Information 

Base (FIB)



Putting It Together

.11

.22

.33

192.16.1.0/24

.44

.55

.66

192.16.2.0/24



Putting It Together

192.16.1.0/24
192.16.2.0/24
192.16.1.0/24
192.16.2.0/24

Destination Cost Next Hop

A 7 C

B 5 C

C 3 C

D 7 E

…

3

4

2 8

2

5

4

3
3

A

B

C

D

E

F

G

H



Recap

• Putting it together:
• We first learned about local networks (expanded by bridges)
• To connect different local networks, we need routers, which forward based 

on IP addresses
• Routing Protocols determine how to populate the Forwarding Information 

Base (FIB)
• We look up the FIB by finding the longest matching prefix



Putting It Together

Destination Next Hop

192.168.74.0/24 Router 1

192.168.74.192/28 Router 2

192.168.74.204/30 Router 3

10.1.120.0/21 Router 4

0.0.0.0/0 Router 5

1. 192.168.74.198
2. 192.168.74.207
3. 10.1.128.12
4. 192.168.74.208
5. 10.1.125.74
6. 192.168.73.0



Recap

• Putting it together:
• We first learned about local networks (expanded by bridges)
• To connect different local networks, we need routers, which forward based 

on IP addresses
• Routing Protocols determine how to populate the Forwarding Information 

Base (FIB)
• We look up the FIB by finding the longest matching prefix
• Prefix Lookup Problem explores how to quickly look up the FIB so we can 

forward packets without creating a bottleneck -> topic for this week!



Prefix Lookup Goals

1. Reduce lookup speed (number of memory accesses)
• To run at wire speed, we need each packet to take:

• 320 nsec at 1 Gbps
• 32 nsec at 10 Gbps
• 8 nsec at 40 Gbps

2. Lower storage in memory
• Lower storage lowers each individual memory access time

3. Lower time to update prefixes



Trie

• A tree where all possible branches are predetermined (by alphabet, 
constant set of numbers, etc)





Trie Data Structure

• Node:
• Value (might be null)
• Array of references (references also 

might be null)
• Example: only words known are 

bat and bath

t

Value: null
0 1 2 3 4 5 … 23 24 25

n n n n n n n n

0 1 2 3 4 … 19 … 24 25

n n n n n n n

Value: null
Value: bat

0 1 2 3 … 8 … 23 24 25

n n n n n n n

Value: bath
0 1 2 3 4 5 … 23 24 25

n n n n n n n n n

a

t

h

b



IP Address Reminders

• The following are different representations of the same network:
• 192.168.74.0/24
• 192.168.74.0 with subnet mask 255.255.255.0
• 110000001010100001001010*

• Note: to study algorithms, we’ll use shorter IP prefixes but realistically 
they can be 0-32 bits



Unibit Trie

• Branch left for 0, right for 1
• P5: 0*

Value: null
0 1

n

Value: P5
0 1

n n



Unibit Trie

• Branch left for 0, right for 1
• Represent this database

Interface Prefix

P1 101*

P2 111*

P3 11001*

P4 1*

P5 0*

P6 1000*



Draw Trie:



Additions

• Follow the tree using the bits in the prefix
• If node already exists, mark node with value (interface)
• Otherwise, create new node(s) for new prefix



Additions

• Follow the tree using the bits in the prefix
• If node already exists, mark node with interface
• Otherwise, create new node(s) for new prefix
• Add P7, P8, P9, P10, P11 to your existing tree

Interface Prefix

P1 101*

P2 111*

P3 11001*

P4 1*

P5 0*

P6 1000*

P7 100000*

P8 100*

P9 110*

P10 011*

P11 11*



Lookups

• Follow the tree using the bits in the prefix
• Keep track of best matching interface so far, and update each time we

encounter a node that stores an interface 



Lookups

• Follow the tree using the bits in the prefix
• Keep track of best matching interface so far, and update each time we 

encounter a node that stores an interface 
• IP addresses are 32 bits, but given the first 8, which interface should 

packet be sent to?
• 10010010
• 11001100
• 10000101
• 01000000



Deletions

• Follow the tree using the bits in the prefix
• If node is internal (not leaf), remove the interface from the node
• If node is a leaf, remove the node AND any one-way branches that 

lead to it

P10

1

1

P5

0



Deletions

• Follow the tree using the bits in the prefix
• If node is internal (not leaf), remove the interface from the node
• If node is a leaf, remove the node AND any one-way branches that 

lead to it
• Delete P10
• Delete P11



Multibit Tries

• Unibit Tries: worst-case memory accesses: 32
• If each takes 10 nsec, this takes 320 nsec -> not good enough for faster (more 

common) wires

• Can we look at more than one bit at a time?
• If we could look up 4 bits at a time, we could lower this to 8 memory accesses
• Main problem: what about prefixes like 11001*?



Prefix Expansion

• If using a stride of m (looking at m bits at a time), transform the 
existing database such that all prefix lengths are multiples of m
• If we’re trying to look at 4 bits at a time, 10* -> P1 would become 4 

entries:
• 1000 -> P1
• 1001 -> P1
• 1010 -> P1
• 1011 -> P1

• 11001* -> P2: 8 entries:
• 11001000, 11001001, 11001010, 11001011, 11001100, 11001101, 11001110, 

11001111 -> all to P2



Prefix Expansion

• What happens if there is a collision, i.e., we expand and the expanded 
prefix already exists?
• Use the interface for the prefix that was originally longer

• 11001* - P2
• 11001111* - P15
• Expansion of 11001* to multiples of 4 includes 11001111*
• Choose P15 because its original prefix (11001111*) was longer



Transform database to multiples of 3

Interface Prefix

P1 101*

P2 111*

P3 11001*

P4 1*

P5 0*

P6 1000*

P7 100000*

P8 100*

P9 110*



Prefix Expansion

• If using a stride of m (looking at m bits at a time), transform the 
existing database such that all prefix lengths are multiples of m
• Result: fewer prefix lengths, more prefixes



Form trie with expanded prefixes



Form trie with expanded prefixes

• Practice: Fill out rest of trie

P5 P5 P5 P5 P8 P1 P9 P2

000
001 010 011 100 101 110

111



Tries Stored in Memory
000 P5

001 P5

010 P5

011 P5

100 P8

101 P1

110 P9

111 P2
000 P7

001 P6

010 P6

011 P6

100

101

110

111

000

001

010 P3

011 P3

100

101

110

111



Fixed Stride Length

• In example so far, within each level in the trie, we look at the same 
number of bits



Variable Stride Length
000 P5

001 P5

010 P5

011 P5

100 P8

101 P1

110 P9

111 P2
000 P7

001 P6

010 P6

011 P6

100

101

110

111

00

01 P3

10

11

2 bits

3 bits



Optimal Stride Length

• For each table, what is the minimum stride length we
could use while keeping all information? Assume for 
now we can only use one table

000 P6

001 P6

010

011

100

101

110 P3

111 P3

000 P6

001 P6

010

011

100

101

110 P3

111

00 P4

01 P4

10

11

0000 P6

0001 P6

0010 P6

0011 P6

0100 P3

0101 P3

0110 P2

0111 P2

1000

1001

1010

1011

1100 P7

1101 P7

1110 P7

1111 P7



Choosing Optimal Stride Lengths Across Trie

• Increasing stride lowers number of lookups needed, at the cost of 
higher memory usage
• Using variable stride lengths can help compress tries to lower their 

memory usage
• Tries can be further compressed – we’ll look at this next time
• There are some non-trie options for IP lookup – also for next time


