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Abstract—We show that deadlocks due to dependencies on consumption channels are a fundamental problem in wormhole
multicast routing. This type of resource deadlocks has not been addressed in many previously proposed wormhole multicast
algorithms. We also show that deadlocks on consumption channels can be avoided by using multiple classes of consumption
channels and restricting the use of consumption channels by multicast messages. We provide upper bounds for the number of
consumption channels required to avoid deadlocks. In addition, we present a new multicast routing algorithm, column-path, which is
based on the well-known dimension-order routing used in many multicomputers and multiprocessors. Therefore, this algorithm could
be implemented in existing multicomputers with simple changes to the hardware. Using simulations, we compare the performance of
the proposed column-path algorithm with the previously proposed Hamiltonian-path-based multipath and an e-cube-based multicast
routing algorithms. Our results show that for multicast traffic, the column-path routing offers higher throughputs, while the multipath
algorithm offers lower message latencies. Another result of our study is that the commonly implemented simplistic scheme of sending
one copy of a multicast message to each of its destinations exhibits good performance provided the number of destinations is small.

Index Terms—Consumption channels, deadlocks, multicasts, multicomputers, routing algorithms, wormhole routing.
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1 INTRODUCTION

N a parallel processor, routing algorithms provide mecha-
nisms for communication between processors executing

a parallel program. The efficiency of routing algorithms
is important for achieving high performance in massively
parallel processors (MPPs). The interprocessor commu-
nication functions in an MPP are usually handled by a
router which receives data from incoming channels and
transmits data to outgoing channels using a suitable
routing algorithm. The routing functions are often im-
plemented in a distributed manner so that all routers
work independently to accomplish the desired commu-
nications. Many commercially available parallel comput-
ers use hypercube and mesh networks for interprocessor
communication with a processor and router module at
each node.

Routing algorithms for hypercubes and k-ary n-cubes
have been extensively studied in the context of one-to-one or
unicast communication. In unicast communication, each
source sends its message to precisely one destination.
Routing algorithms for unicast communication are usually
implemented as system calls in parallel machines. More
powerful communication primitives that are useful in the
execution of parallel programs are broadcast and multicast,

which allow data to be transferred from one source node to
many destinations. Broadcasts and limited forms of multi-
casts are supported on some commercial machines. For ex-
ample, nCUBE-2 supports global broadcast to all nodes and
selective multicast when all destinations form a subcube. In
other machines, such as the Intel Paragon [12], users can
send a multicast to multiple destinations by sending a copy
of the message to each destination node.

Multicast messages are useful for efficient execution of
parallel programs. For example, blocked matrix multiplica-
tions require broadcasting of matrix blocks in the rows of a
mesh (see, for example, chapter 5 of [13]). In addition, mul-
ticast messages occur in several contexts; for example,
when a master node dispatches information to several slave
nodes, synchronization of multiple nodes, cache invalida-
tions, etc. [13]. An important question is whether to support
multicast communication in a parallel machine or imple-
ment multicast communication by other alternatives; these
alternatives include using multiple unicast messages for
multicast communication and using a broadcast message to
accomplish multicasting.

There are several studies on the performance of multi-
cast communication in multicomputer networks [20], [15],
[16], [17], [24], [23], [9], [18], [10]. Lin et al. [17], [16] pres-
ent two multicast algorithms, dual-path and multipath,
based on the Hamiltonian paths in the interconnection
network. These are especially suited for wormhole switch-
ing in low-dimension mesh and torus networks. (Worm-
hole switching is a form of cut-through switching in
which blocked messages are not buffered [7]. Many recent
multicomputers and multiprocessors use this form of
routing [1], [5], [19], [12].) The previous studies on worm-
hole multicast communication addressed and solved the
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issue of deadlocks arising from dependencies on commu-
nication channels. For wormhole multicast routing, dead-
locks can also occur due to dependencies on consumption
channels [18], [24], [3].

In this paper, we show that deadlocks due to depend-
encies on consumption channels are a fundamental prob-
lem in wormhole multicast routing. An example of such a
deadlock is shown in Fig. 4, with the presence of two
multicast messages and a cyclic dependency for con-
sumption channels. This example is explained in more
detail in a later section. To solve this problem of deadlocks
on consumption channels, we propose to provide multiple
consumption channels in each node. Multiple consump-
tion channels can be implemented using a single physical
consumption channel on which several virtual consump-
tion channels are time-multiplexed. Our results presented
here expand on our earlier work in [4], [3]. Liu and Duato
[18] and Panda et al. [24], [23] have independently discov-
ered the consumption channel deadlock problem and
have given solutions to specific algorithms. In this paper,
we give more general results on this problem and provide
sufficiency conditions for the minimum required con-
sumption channels to avoid deadlocks.

Another issue we address in this paper is the compati-
bility between unicast and multicast routing algorithms. A
unicast routing algorithm and a multicast routing algorithm
are said to be compatible with each other if there are no
deadlocks among the unicast and multicast messages
routed by them. Certain unicast routing algorithms are in-
compatible with some multicast routing algorithms. For
example, the e-cube algorithm [7] for unicasts is incompati-
ble with the dual-path and multipath algorithms for multi-
casts by Lin et al. [16]. One approach to handle this problem
is to use the same multicast algorithm for unicast routing
also. Another approach is to design multicast algorithms that
are compatible with the existing unicast algorithm. This ap-
proach has been pursued in a few earlier works [24], [3], [11].

In this paper, we present a multicast routing algorithm,
called the column path algorithm, which is compatible with
the e-cube algorithm. Since the e-cube is a popular routing
algorithm used in several recent parallel computers, such as
Intel Paragon [12] and Cray T3D [5], designing multicast
routing algorithms that are compatible with the e-cube al-
gorithm is important. The column path method uses at
most two message copies for each column in the mesh that
contains one or more destinations of a multicast communi-
cation. Messages are routed using the row-column or e-cube
routing method. The column path algorithm is an example
of the path-based, multidestination wormhole routing
methods, in which a single message is sent to multiple des-
tinations by specifying the destination addresses in the
message header [16], [24]. The column path algorithm is a
compromise between the naive technique of sending one
copy to each destination of the message and the specialized
Hamiltonian-path based multicast techniques, which send a
few message copies each with many destinations.

The multicast algorithms proposed in [24], [23], [10] are
similar to the proposed column path algorithm. Panda et al.
[24], [23] present a general theoretical framework which in-
cludes the e-cube based multicast routing. It is more flexible

than the proposed column path (see Section 2.3) but re-
quires more resources. So, we have compared the perform-
ances of this algorithm with the column path using
simulations to see the performance implications. Fleury
and Fraigniaud [10] have proposed a routing algorithm
which groups multiple columns of a mesh into a block and
sends one copy of the message to each such block. This re-
sult could be used to derive e-cube compatible multicast
techniques by choosing partial columns as blocks. Fleury
and Fraigniaud do not consider, however, deadlocks re-
sulting from consumption channels.

Using simulations, we study the performance of various
multicast algorithms with multiple multicasts and with a
mixture of multicasts and unicasts. We compare the per-
formance of our column path routing scheme with the
multipath [17] and the e-cube based multicast algorithm
[24]. Our results show that for multicast traffic, the column
path routing offers high throughputs, while the multipath
algorithm offers lower message latencies. Another result of
our study is that the performance of the naive multicast
technique is comparable to the sophisticated schemes if the
number of destinations is small.

The rest of this paper is organized as follows. Section 2
describes the various multicast algorithms in detail. Section 3
shows several situations in which deadlocks can occur when
previously proposed multicast algorithms are used; this sec-
tion also presents possible solutions for avoiding these
deadlocks. Section 4 presents performance results of various
algorithms. Section 5 summarizes the results reported in this
paper.

2 MULTICAST ROUTING ALGORITHMS

In this paper, we consider k-radix, two-dimensional meshes
with wormhole switching technique. But all the results and
discussions can be applied to multidimensional tori and
meshes with suitable modifications.

The two dimensions of the mesh are denoted as DIM1 and
DIM0. The rows of a 2D mesh are numbered from top to bot-
tom 0, 1, ¤, k - 1, and the columns are numbered from left to
right 0, 1, ¤, k - 1. Node x, 0 � x < k2, in a 2D mesh may be
represented by a two-tuple (x1, x0), where x1 is the node’s row
number and x0 the node’s column number in the 2D grid.
The hops taken by a message in a row correspond to hops
through processors in DIM0 and hops in a column correspond
to hops in DIM1. In addition, a hop may be a “+” or a “-” hop,
depending on the indices of the current node and the next
node in the dimension of travel. For example, DIM1+ hops
correspond to column hops from top to bottom. A communi-
cation channel from node x to y is denoted by [x, y].

Since multicast is a complex form of communication,
many researchers have addressed the issue of deadlock-free
multicast routing for mesh and other networks. The main
emphasis of these earlier works has been to devise multi-
cast schemes which ensure that dependencies on communi-
cation channels are acyclic. For this purpose, multiple vir-
tual channels are sometimes multiplexed on a single physi-
cal channel to create many directed virtual networks. The tree-
based multicast schemes require multiple virtual channels on
each physical channel for deadlock free routing [16].
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One naive algorithm for multicast routing is to generate
several unicast messages, one for each destination of the
multicast message, and route these unicast messages inde-
pendently through the network. This algorithm, called indi-
vidual, has the potential to perform well when the average
number of destinations for each multicast message is small
(see Section 4). In addition, routing of each individual mes-
sage can take place using unicast routing and, hence, there
cannot be additional deadlocks (for example, due to con-
sumption channels) in this solution. Many recent distrib-
uted shared memory multiprocessors use this technique to
perform cache invalidations in directory schemes [1], [14].

In this section, we describe a few important multicast al-
gorithms that have been recently proposed and a new algo-
rithm, which we call the column-path algorithm. Our discus-
sion in this section is primarily on the avoidance of dead-
locks due to dependencies on communication channels. The
issue of deadlocks due to dependencies on consumption
channels is addressed in the next section.

2.1 Hamiltonian-Path-Based Multicast Routing
In this method, first an undirected Hamiltonian path, which
goes through each node exactly once, of the network is
constructed. An example of an undirected Hamiltonian
path, with node (0, 0) as an end node, is given in Fig. 1.

From this, two directed Hamiltonian paths can be con-
structed: One starts at (0, 0), the Hu network, and another
ends at (0, 0), the Hl network, as shown in Fig. 1. The links
that are not part of the Hamiltonian path may be used in
the appropriate directions to reduce path length.

The dual-path and multipath algorithms by Lin et al.
[16], [17] are based on the acyclic directed networks thus
formed. The destinations of a multicast message are parti-
tioned into a small number of subsets (at most four), and a
copy of the multicast message is sent to each subset of des-
tinations. Each copy of the message visits its destinations in
a predefined order, which is determined by the positions of
the destinations in the Hamiltonian path. Different copies
of a multicast message use disjoint sets of physical channels
and are routed independently of one another. The path-
based schemes attempt to alleviate the congestion and
deadlocks introduced by tree-based multicast algorithms,
albeit by using longer paths.

In the dual-path algorithm, multicast messages from a
node are transmitted on appropriate parts of the Hu and Hl
networks. Fig. 2a illustrates the portions of Hu and Hl net-
works used by node (3, 2) to send its multicast messages.
Therefore, the destinations of a multicast message are
placed into two groups. One group has all the destinations
that can be reached from the source node using the Hu

(a) (b)    (c)

Fig. 1. Example of (a) an undirected Hamiltonian path and the corresponding (b) Hu and (c) Hl directed networks of a mesh. The solid lines indi-
cate the Hamiltonian path and dashed lines indicate the links that could be used to reduce path lengths in message routing.

              

            (a)      (b)

Fig. 2.The subnetworks of Hu and Hl used by multicast messages from node (3, 2) in (a) dual-path routing and (b) multipath routing. Also shown
are the paths of an example multicast message from (3, 2). For clarity, the links unused by multicasts from (3, 2) are not indicated.
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network, and the other has the remaining destinations,
which can be reached using the Hl network. As an example,
consider a multicast message from node (3, 2) to destina-
tions (5, 0), (3, 1), (0, 4), (1, 4), (0, 5), (1, 5), and (5, 5). In the
dual-path method, two message copies are created: One
copy services destinations (1, 4), (1, 5), (0, 5), and (0, 4) in
sequence, and the other serves destinations (3, 1), (5, 5), and
(5, 0). For shorter paths, vertical channels that are not part
of the Hamiltonian paths are used appropriately. The use of
short-cuts for the example multicast is shown in Fig. 2a.

The dual-path algorithm uses at most two copies of the
message for multicast communication. This may increase the
path length for some multicast messages. The multipath al-
gorithm attempts to reduce path lengths by using up to four
copies (2n for n-dimensional meshes) of the original multi-
cast message. As per the multipath routing algorithm, all the
destinations of the multicast message are grouped into four
disjoint subsets such that all the destinations in a subset are
in one of the four quadrants when source is taken as the ori-
gin. The copies of the message are routed using the dual-path
routing rules. For a complete description, see [16]. Fig. 2b
indicates the routing of the example multicast message from
(3, 2) using the multipath algorithm.

The dual-path and multipath schemes provide deadlock-
free routing of multicast messages. Further, they also pro-
vide minimal routing of unicast messages, since vertical
links are used for shortcuts. Therefore, either scheme can be
used to route unicast and multicast messages simultane-
ously in a common framework.

2.2 Column-Path Multicast Routing
The dual-path and multipath schemes are not compatible
with the well-known e-cube routing algorithm. In this pa-
per, we are interested in designing multicast algorithms
that are compatible with the e-cube routing. This led us to
investigate other algorithms that use the e-cube as the base
technique for unicast routing.

The column-path algorithm partitions the set of destina-
tions of a multicast message into at most 2k subsets (k is the
number of columns in the mesh), such that there are at most
two messages directed to each column. If a column of the
mesh has one or more destinations in the same row or in
rows above that of the source, then one copy of the message
is sent to service all those destinations. Similarly, if a col-
umn has one or more destinations in the rows below that of
the source, then one copy of the message is sent to service
all those destinations. One copy of the message is sent to a
column if all destinations in that column are either below or
above the source node; otherwise, two messages are sent to
that column.

Let us consider the example multicast message from
node (3, 2) to destinations (5, 0), (3, 1), (0, 4), (1, 4), (0, 5),
(1, 5), and (5, 5), used for Hamiltonian-path-based algo-
rithms. The paths used under the column path are shown in
Fig. 3. Five copies of the message are used to achieve the
desired multicast operation. Though destinations (0, 5),
(1, 5), and (5, 5) are in the same column, two message cop-
ies are sent to this column, since two of the destinations are
above the source node’s row and the other below. Each of
these messages is routed using the e-cube (or row-column)

routing algorithm. Therefore, the column-path routing is
compatible with the unicast routing method used in the
current parallel computers.

2.3 Multicast Routing Conforming to Base Routing
Panda et al. [24], [23] have proposed a general technique to
provide multicast routing capability using the existing uni-
cast routing method. The unicast routing algorithm can be
the e-cube or an adaptive algorithm. As in the path-based
algorithms described above, the set of destinations of a
multicast message are partitioned such that each subset of
the destinations can be serviced by a single message. Each
such message visits its destinations in a specific order such
that its entire path is a valid path for a unicast message
between the source of the multicast and the last destination
of the message.

As an example of this approach, let us consider the e-
cube based multicast scheme (denoted, e-mcast). With the
e-mcast algorithm, a message may service any destinations
that may lie in its row path to its destinations in a column.
For the example multicast in Fig. 3, the e-mcast algorithm
uses just four message copies—the message to (5, 0) can
service destination (3, 1), since it is in its row path. In con-
trast, no message in the column path scheme can service
destinations in two different columns. This is the main dif-
ference between the column path and e-mcast algorithms.
Because a multicast message in this scheme can service
destinations in more ways, e-mcast tends to reduce the
number of messages used compared to the column path.
However, this also creates more dependencies on other re-
sources, such as consumption channels.

In the next section, we describe another form of depend-
encies that are specific to multicasts in wormhole switching.

3 CONSUMPTION CHANNEL DEPENDENCIES

A common assumption, called consumption assumption in
[21] and also used here, is that when a flit of a message
reaches its destination, it is consumed in finite time. With

Fig. 3. Example of column path routing.
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this assumption, the proof of deadlock-free routing of uni-
cast messages by a wormhole switching algorithm is re-
duced to showing that there do not exist cyclic dependen-
cies on the communication channels during the routing
process. There are some recent studies on the performance
effects of consumption channels for wormhole switching of
unicast messages [2]. However, little attention has been
paid to the issue of consumption channels in wormhole
multicast routing. We now show that wormhole multicast
routing algorithms cause cyclic dependencies on the con-
sumption channels.

3.1 Consumption Channel Deadlocks
To see the deadlocks on consumption channels, consider
two-dimensional meshes in which each node has one con-
sumption channel satisfying the consumption assumption.
Assume that each router has buffer space to hold only a few
(typically, one or two) flits of each message that is destined
to its processor or passing through it. A multicast message
that reaches one of its destinations and has more destina-
tions to be visited can be handled in two ways:

1)�The message reserves the consumption channel in
the current destination and then reserves/awaits
the communication channel in the path to its next
destination;

2)�The message is consumed (absorbed and removed
from the network) by the router of the current desti-
nation node and then retransmitted to its next desti-
nation later.

The latter strategy is called absorb-and-retransmit. We
show that deadlocks occur in both cases. First, we consider
Method 1 of handling messages at intermediate destinations.

Fig. 4 illustrates the routing of two multicast messages in
a linear chain, which is a subnetwork of some multicom-
puter network such as mesh or torus. The first message, m1,
originates at node a and has destinations b, c; the second
message, m2, originates at node d and has destinations b, c.
Furthermore, nodes a, b, c are left neighbors to b, c, d, re-
spectively. The following scenario is shown in Fig. 4. The
message m1 obtains the communication channel from a to b,
denoted [a, b], consumption channel in b, denoted Consb,
and communication channel [b, c]; m2 obtains the commu-
nication channel [d, c], consumption channel in c, Consc , and
communication channel [c, b]. The reservation of the con-
sumption channel is shown by labeling the (flit) buffer asso-
ciated to it with the name of the message that has reserved it.

Due to flit-level flow control in wormhole switching,
node b can accept only the header flit (and a few data flits if
buffer depth is more than one flit) of m1. Though the con-
sumption channel in b is free, m1 cannot be consumed at b
until it acquires the consumption channel in c also, since
messages are not buffered at intermediate nodes during
routing. A similar condition occurs with the consumption
channel in c and message m2. Therefore, m1 waits for the
consumption channel occupied by m2, and vice versa. This
is a circular wait on consumption channels by m1 and m2,
which leads to deadlock.

This discussion motivates the following result on multi-
cast wormhole routing for multicomputer networks.

THEOREM 1. Let M be a multicomputer network such that each
node has a single consumption channel satisfying the con-
sumption assumption. Let F be a wormhole multicast algo-
rithm with the following properties:

1)�A message can wait for a communication channel after
reserving a consumption channel, and

2)�There exists a set of two or more nodes that multicast
messages visit as destinations in different orders.

Then, the algorithm F can lead to deadlocks on consump-
tion channels when it routes two or more multicast mes-
sages simultaneously.

The proof is similar to the discussion given for the deadlock
in Fig. 4. The main difference is that b and c may not be
neighbors in this general case, so additional dependencies
on communication channels between b and c may have to
be considered. But dependencies on consumption channels
at b and c will be the same.

It is noteworthy that the proposed column path and
virtually all the multicast algorithms proposed in the lit-
erature [16], [23], [9] satisfy the hypothesis of Theorem 1.
The lone exception is the individual scheme.

COROLLARY 1. The dual-path, multipath, and column path algo-
rithms for mesh networks can cause deadlocks on consump-
tion channels if two or more multicast messages are to be
routed simultaneously, when there is only a single con-
sumption channel satisfying the consumption assumption.

We now show that deadlocks still occur if a message is
absorbed and retransmitted at intermediate destinations.
We still assume one consumption channel per node satis-
fying the consumption assumption. Any message that re-
serves the consumption channel releases the consumption
channel only after it is absorbed. Let us consider Fig. 4 once

Fig. 4. Example of deadlocks on consumption channels.
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again. A plausible approach to avoid deadlocks on con-
sumption channels may be to let a multicast message be
absorbed by its destinations. If an absorbed message has
more destinations to visit, then it may be retransmitted
by the last destination node that absorbed the message.
Therefore, a node can buffer two messages completely:
one that is being consumed and another that is being
transmitted. With the absorb and retransmit strategy for
the situation in Fig. 4, m1 is absorbed at b and retrans-
mitted to c later, when m1 obtains the consumption
channel in c; similarly, m2 is absorbed at c and retrans-
mitted to b later.

The motivation for absorb and retransmit strategy is
that, while intermediate nodes may not have space to store
and retransmit a message, it might be feasible to do this at
message’s destinations. For example, a multicast message
may be absorbed at a destination through its consumption
channel and retransmitted later via its injection channel.

Though the absorb and retransmit strategy avoids
deadlocks for the example in Fig. 4, it does not work in
general. Now, deadlocks occur on consumption and re-
transmission channels. We illustrate this in Fig. 5. There are
four multicast messages that need to be routed. The infor-
mation on source, destination, resources acquired, and re-
sources requested by these messages are given in Table 1.
The notations Consx, Retransx are used to indicate, respec-
tively, the consumption and retransmission channels in
node x. The rectangle indicates the flit buffer associated
with a consumption channel and the triangle indicates the
flit buffer associated with the retransmission channel. Fig. 5
shows the following scenario: m1 has acquired the commu-
nication channel [a, b] and consumption channel in b, and
waits for the retransmission channel in b; m3 has acquired
the retransmission channel in b, communication channel [b, c],
and waits for the consumption channel in c; m2 has ac-
quired the communication channel [d, c], consumption chan-
nel in c, and waits for the retransmission channel in c; m4 has
acquired the retransmission channel in c, communication

channel [c, b], and waits for the consumption channel in b.
There is a circular wait for resources by these four mes-
sages, and deadlock occurs.

THEOREM 2. Let the absorb and retransmit strategy be used in
routing multicast messages by algorithm F in a 2D mesh.
Let m be the maximum number of multicast messages a
node can hold, at a time, absorbed messages for later re-
transmission. Then, deadlocks can occur if 2m + 2 or more
multicast messages are in progress simultaneously.

The above discussion, which proves the theorem for m = 1,
can be generalized easily.

The absorb and retransmit strategy has been used in the
literature for multicasts and for fault-tolerant routing. For
example, Suh et al. [25] propose a fault-tolerant routing
algorithm in which messages affected by faults are ab-
sorbed by an intermediate node and later retransmitted to
the final destination. The hierarchical multicast routing in
[23] uses one or two levels of leaders which distribute the
message data to the nodes in their group. Avoiding dead-
locks solely using virtual channels requires a large number
of them, since such tree form of communication is not suit-
able for wormhole switching [22]. So, multicast messages
are absorbed by these leaders and retransmitted to their
group members. However, the absorb and retransmit strat-
egy is nothing but the well-known store-and-forward
routing (with possibly cut-throughs allowed). The buffer
space used for absorb and retransmit is a common pool of
buffers used by the messages being consumed. It is well-
known in store-and-forward routing that, when the finite
buffer space is not partitioned and the network is undi-
rected, deadlocks occur. The buffer space for the absorb-
and-retransmit can be finite if the absorbed messages stay
at the network interface-router portions of a node and do
not use the node’s local memory. If absorbed messages are
allowed to be stored in nodes’ local memories, then the
deadlock problem is virtually solved; such a solution has
the disadvantages of stealing valuable memory bandwidth
from the processor and additional message delays. In

TABLE 1

Msg. Source Dest. List Resources Obtained Resources Awaiting
m1 a b, c [a, b], Consb Retransb
m3 a b, c, d Retransb, [b, c] Consc
m2 d b, c [d, c], Consc Retransc
m4 d a, b, c Retransc, [c, b] Consb

Fig. 5. Example of deadlocks with absorb-and-retransmit strategy. Communication channel flit buffers are not shown for clarity.
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summary, if the buffer space is finite and not partitioned,
absorb-and-retransmit strategy can lead to deadlocks in the
presence of multicast messages.

The consumption deadlocks in wormhole multicast
routing can be avoided by replicating and ordering the con-
sumption buffer or channel resources. Since the motivation
behind wormhole switching is to reduce the buffer space,
we explore the issue of replicating and ordering consump-
tion channels. One way to solve deadlocks on consumption
channels is to provide as many or more consumption chan-
nels than the maximum number of messages that can be in
a node at any time instant. By partitioning and systemati-
cally allocating consumption channels, however, deadlocks
can be avoided using fewer consumption channels.

3.2 Prevention of Consumption Channel Deadlocks
The above results show that the cyclic dependencies caused
by multicast messages on consumption channels is a fun-
damental limitation for deadlock free wormhole switching.
As in the case of deadlocks on communication channels,
which are resolved by multiple virtual communication
channels, multiple (physical or virtual) consumption chan-
nels can be used to resolve deadlocks on consumption
channels. We give below some general results and bounds
on the number of consumption channels required. Then, we
turn our attention to some specific multicast schemes.

We assume that the underlying multicomputer network
has regular topology, such as mesh or torus. With the ex-
ception of a few boundary nodes, which may have a
smaller node degree, most of the nodes have the maximum
node degree, which is determined only by the topology. For
now, let us assume that only the minimum required num-
ber of virtual channels are simulated on each physical
channel to avoid deadlocks on communication channels in
routing multicast messages by the given multicast routing
algorithm. To keep the arguments consistent, we assume
that one virtual channel is simulated on each physical
channel if the routing algorithm is deadlock free without
virtual channels.

DEFINITION 1. Let INx and OUTx be, respectively, the number of
incoming and outgoing virtual channels of node x that can
be used by multicast messages to reach or leave node x.
Then, vin = Maximum {INx | x is a node of the network}
and vout = Maximum {OUTx| x is a node of the network}.

LEMMA 1. Minimum of {vin, vout + 1} consumption channels per
node are sufficient to avoid deadlocks on consumption
channels.

PROOF. First, let us consider the dependencies by messages
arriving at intermediate destinations and need to visit
other destinations. We specify that such a message
should reserve a consumption channel before reserv-
ing its next (communication) virtual channel. Let us
associate one consumption channel with each of the
vout virtual channels that can be used by multicast
messages. So, the dependency caused by a multicast
message waiting for or using a consumption channel
at one of its intermediate destinations has one-to-one
correspondence to the dependency caused by the
same message waiting for or using the associated

outgoing virtual channel of this node. Since the algo-
rithm is free of deadlocks on communication chan-
nels, these dependencies cannot lead to deadlocks. A
message that arrives at its final destination node uses
no outgoing virtual channels of the node. These mes-
sages can wait for or use the (vout + 1)th consumption
channel without creating any additional dependen-
cies. So, vout + 1 consumption channels are sufficient to
avoid deadlocks.

Now, we can repeat this argument for the vin in-
coming virtual channels used by multicast messages
to arrive into a node. In this case, we can associate one
consumption channel to each incoming virtual chan-
nel used by multicast messages, much like flit buffers
are associated with incoming virtual channels. This
avoids any additional dependencies caused by multi-
casts reserving consumption channels. So, by this ar-
gument, vin consumption channels are sufficient.

Therefore, the minimum of {vin, vout + 1} consump-
tion channels are sufficient to avoid deadlocks. o

Lemma 1 gives an upper bound on the number of con-
sumption channels per node and applies to all networks
and routing algorithms. When more specific information
about the routing algorithm is known, more precise bounds
on the number of consumption channels can be obtained.

Suppose F is a multicast routing algorithm such that, for
each message routed by F, one or both of the following
conditions are true:

•� It is possible to further route, without creating comm-
unication channel deadlocks, to some node after the
message has reached its last destination.

•� The last destination of the message is a node with out
degree less than vout.

As far as we know, all the proposed wormhole multicast
routing algorithms for networks such as meshes satisfy the
above property.

COROLLARY 2. vsuf = Minimum {vin, vout} consumption channels
per node are sufficient for the routing algorithm F.

PROOF. Let M be a message that has reached a destination, x.
If M has further destinations to visit, then it will re-
serve the consumption channel corresponding to the
outgoing channel it will use for its next hop. If x is the
last destination of M, then M reserves a consumption
channel as follows. If M can be further routed without
creating deadlocks, then it can reserve the consumption
channel associated with the outgoing channel it can use.
It is noteworthy that the message will not be routed any
further. The ability to route further is used only to de-
termine the consumption channel it can reserve in its fi-
nal destination. If OUTx < vout, then it can reserve a con-
sumption channel that is not associated with any of the
outgoing channels of x. Therefore, vsuf � vout. The proof
for vsuf � vin is the same as in Lemma 1. o

Given a network, several directed, acyclic networks
(DANS) of virtual channels can be constructed. The path of
a multicast message, after it reserved a consumption channel,
can be partitioned into several segments, with each seg-
ment belonging to a specific DAN. Let S be a set of directed,
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acyclic networks derived from the original network. We say
that there is a dependency from DAN1 ¶ S to DAN2 ¶ S if
there is a multicast message that needs to use a communi-
cation channel in DAN2 after using a communication chan-
nel in DAN1. It should be noted that the union of DANs
need not contain all virtual channels of the network and
that a message may traverse on a DAN even before reach-
ing its first destination.

DEFINITION 2. Let S be a set of l DANs {DAN1, DAN2, ¤}, and
V be the set of all virtual channels that belong to the DANS
of S. We say that S is a valid set if the following properties
are satisfied:

1)�A message that has reserved a consumption channel
uses a channel in V for its next hop (if any), and

2)�There exists a partial order among the DANs such that
each multicast message visits DANs as per the partial
order (that is, no multicast message violates the partial
order while visiting DANs).

There are several practical routing algorithms for which
valid sets of DANS can be constructed easily. Examples of
such algorithms include the column path, multipath, and
e-mcast.

DEFINITION 3. A valid set of DANS is minimal if it has the least
cardinality among all valid sets.

For a given network, the routing algorithm and the
virtual channels used determine the valid and minimal
sets of DANS. Often, many valid sets of DANS can be
formulated. The number of minimal sets of DANS is much
smaller, but a minimal set need not be unique. For 2D
meshes and column path routing, the set of all virtual
channels of the network is a valid set of DANS. Its mini-
mal set is unique and consists of two DANS: One consist-
ing of all the nodes and only the upward direction column
communication channels, and the other consisting of all
the nodes and downward direction of column communi-
cation channels (see Fig. 6). A multicast message, after
reserving its first consumption channel, traverses in only
one of the two acyclic networks.

LEMMA 2. If S is a valid set of DANS for a given routing algo-
rithm, then |S| consumption channels per node are suffi-
cient to avoid deadlocks on consumption channels.

PROOF. In each node of the network, there are |S| consump-
tion channels. Let us associate a consumption channel
with each DAN of the set S. A multicast message, M,
that arrives into one of its destination nodes, x, waits
for or reserves the consumption channel associated
with the DAN in which its most recent hop lies. This
may not be possible if the message has not traversed on
any DAN, in which case, x is the first destination of M.
If M has to visit other destinations, then it will use a
channel on a DAN for its next hop. M will reserve the
consumption channel corresponding to this DAN. If M
has no other destinations to visit, then it is a unicast
message, since x is its first and last destination. A uni-
cast message can wait for or reserve any consumption
channel in x, since it will not create any additional de-
pendencies after it reserves the consumption channel.

To show that deadlocks are avoided, we rank the
consumption channels as follows. (The communication
channels have been ranked by the routing algorithm,
since it avoids deadlocks on communication channels.)
A consumption channel of a node is ranked higher
than the incoming virtual channels of the correspond-
ing DAN and incoming channels that are not on any
DAN and lower than the outgoing virtual channels of
the DAN. Therefore, the set of virtual channels of a
DAN and the associated consumption channels have a
partial order according to which multicast messages
acquire them. Since the message paths are acyclic
within a DAN, there cannot be deadlocks within a
DAN. Since different DANs have different sets of con-
sumption channels used, and there is a partial order
according to which messages use DANs, there cannot
be deadlocks when all DANs are considered. o

COROLLARY 3. Two consumption channels are necessary and
sufficient for the column path routing algorithm.

PROOF. Fig. 4 and the related discussion indicate that one
consumption channel is not sufficient to avoid dead-
locks for the column path algorithm. A valid set with
two DANs can be constructed for the column path al-
gorithm. One DAN consists of all the nodes and only
the upward direction column communication channels,
and the other DAN consists of all the nodes and
downward direction column communication channels.

Fig. 6. Directed acyclic networks of the minimal set for column path routing in a mesh. Dashed lines indicate the row links used by messages prior
to reserving consumption channels at their first destinations and solid lines with arrows indicate the virtual channels forming a specific DAN.
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Fig. 6 indicates the DANs for an example mesh net-
work. Hence, from Lemma 2, two consumption chan-
nels per node are sufficient to avoid deadlocks on
consumption channels. o

The e-mcast algorithm (see Section 2.3) allows a message
to service destination nodes in its row path while traveling
towards a column of destinations. This flexibility seems to
come at the cost of increased consumption channel re-
quirement. Panda et al. [23] have shown that four con-
sumption channels per node are sufficient to avoid dead-
locks. We confirm this result by giving a valid set of four
DANs: DAN1 contains all DIM0+ communication channels,
DAN2 all DIM0- channels, DAN3 all DIM1+ channels, and
DAN4 all DIM1- channels.

COROLLARY 4. Two consumption channels are necessary and suffi-
cient for the dual-path and multipath routing algorithms.

PROOF. Both dual-path and multipath algorithms have a
valid set of two DANs: Hu and Hl. So, from Lemma 2,
two consumption channels per node are sufficient.
Fig. 4 and the related discussion indicate that one
consumption channel cannot avoid deadlocks. o

A unicast message can wait for or use any consumption
channel without deadlocks, since it will release all of its
resources in finite time.

3.2.1 Using Additional Virtual Communication Channels
Thus far, we assumed that only the minimum required
number of virtual channels are used for multicast routing.
However, often more than the minimum number of virtual
channels are used to improve performance [6] and provide
adaptivity [8], [9]. When extra virtual channels are used
solely to reduce congestion [6], more than one virtual chan-
nel may be used to service messages that need to use a par-
ticular virtual channel class. For example, with two virtual
channels per physical channel of a 2D mesh and column
path routing, a message may use either one of the virtual
channels on the physical channel specified by its routing
algorithm for its next hop. Then, the number of outgoing
virtual channels used by multicast messages is four. So, the
number of outgoing virtual channels for multicast messages
increases, but the actual number of classes of virtual chan-
nels that a message uses remains the same. Therefore, the
number of consumption channels required to avoid dead-
locks remains the same if each multicast message is re-
quired to reserve a consumption channel before reserving
its next virtual channel at each of its intermediate destina-
tions. To see the performance benefits of increased virtual
channels, however, it may be desirable to increase the num-
ber of consumption channels so that there is no excessive
congestion on consumption channels.

When extra virtual channels are used to improve the
adaptivity of a routing algorithm, it often results in an
adaptive algorithm with dynamic transitions [8]. These al-
gorithms have the base algorithm with the required virtual
channels to provide deadlock free routing and additional
virtual channels with additional routing rules to use them
adaptively. The complete channel dependency graphs for
these algorithms have cycles, but the dependencies induced
on the base virtual channels used for deadlock free routing

are acyclic. From Lemma 1, deadlocks on consumption
channels can be avoided if vsuf = min{vin, vout + 1} consump-
tion channels per node are used. The vin and vout are the
maximum node in degree and out degree calculated with
all virtual channels considered.

If the adaptive algorithm routes such that all destina-
tions of a multicast message can be served using the base
virtual channels only, then vin and vout in Lemma 1 are the
maximum node in degree and out degree calculated with
only the base virtual channels considered. For such algo-
rithms, the concept of DANs may be applied with some
modifications. These modifications are needed, since a mes-
sage may use adaptive channels in between hops on the
channels of a given DAN. To explain this, let us assume that
a blocked message waits for a suitable channel from the
base set only, but will use any suitable adaptive channel
that becomes free in the mean time. (This assumption is
consistent with the adaptive routing theory proposed by
Duato [8]. However, to facilitate the description of modified
DANs, we consider the current channel dependencies
rather than the extended channel dependencies discussed
by Duato.) The channel dependencies at a given instant of
time consist of dependencies resulting from messages
waiting for the base channels and the actual use of channels
at that time instant. So, we define base DANs that contain
virtual channels from the base set. The base DANs have a
permanent structure. For each base DAN, we define a cur-
rent DAN that contains all the channels of its base DAN
and the adaptive channels that are actually being used by the
messages traveling in the DAN at that instant of time. Since
the routing algorithm is deadlock-free, the use of adaptive
channels is such that they appear as alternative paths,
without creating cycles, in the current DANs.

It is noteworthy that such adaptive routing does not re-
duce the number of message copies used, but can improve
the performance by using adaptivity to reduce source con-
gestion. For an example, consider the e-cube-based adaptive
routing with two virtual channels per physical channel in a
mesh network. One virtual channel is used for e-cube rout-
ing and the other for adaptive routing. When a message
finds the channel given by the base e-cube routing busy, it
may use an adaptive channel that takes the message closer
to its destination. This does not induce cyclic dependencies
on the base virtual channels, however. So, four consump-
tion channels per node are sufficient to avoid deadlocks. If
messages are created such that all destinations lie in a col-
umn, then only two consumption channels are sufficient.

We illustrate this using the example multicast in Fig. 3.
With the column path as the base deadlock-free routing
method, five messages are still used. However, each message
copy can be routed adaptively from the source of the multi-
cast to its first destination. With the e-mcast as the base
deadlock-free routing method, four message copies are used
(see Section 2.3). A message copy is routed adaptively from
the last destination in its row path (or source if it has no row
destinations) to its first destination in a column. For example,
the message copy serving destinations (3, 1) and (5, 0) has
adaptivity after reserving a consumption channel in (3, 1),
while the message copy serving destinations (0, 4) and (1, 4)
has adaptivity from the source to its first destination (1, 4).
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4 SIMULATION STUDY

To study the performance issues, we have developed a flit-
level simulator. This simulator can be used for wormhole
switching in meshes and tori for unicast and multicast traf-
fic. We present performance results for the multipath, indi-
vidual, column-path, and e-mcast algorithms.

We have simulated an 8 � 8 mesh with uniform traffic
pattern and message interarrival times using the geometric
distribution. In addition, we have used message sizes of 20,
100, 500, and 1,000 flits. We have varied the number of des-
tinations from 10 to 20 to 30. For deadlock free routing, one
virtual channel per physical channel is sufficient for all the
four algorithms simulated. We have conducted simulations
with one, two, and four virtual channels per physical chan-
nel, since we are interested in finding performance im-
provements with multiple channels [6]. The virtual chan-
nels on a physical channel are demand time-multiplexed,
and it takes one cycle to transfer a flit on a physical channel.
In all cases, each physical channel is provided with eight
flits of storage space. So, a virtual channel is provided with
a buffer of size eight, four, or two flits, depending on one,
two, or four virtual channels are simulated on a physical
channel. We have used node delays of three cycles to proc-
ess the header of a message, and two cycles for data flits
cutting-through intermediate nodes in their paths.

To avoid consumption channel deadlocks, the e-mcast
algorithm requires four consumption channels per node
[23], the column path and multipath two, and the individual
one. So, we have conducted simulations with two and four
consumption channels per node. With two consumption
channels per node, we have simulated only the multipath,
individual, and column-path algorithms, since the e-mcast
algorithm requires at least four consumption channels for
deadlock avoidance. A multicast message can use any
available consumption channel with the individual algo-
rithm, but only a specific one, as given by its type, with the
column path and multipath algorithms. (See Corollaries 3
and 4.) With four consumption channels, we have simu-
lated all four algorithms. In the e-mcast approach, the four
consumption channels are partitioned into four distinct
classes: 0 through 3. Upon reaching a destination, a multi-
cast message uses a specific class corresponding to the most
recent physical channel used—DIM0+, DIM0-, DIM1+, and DIM1-.
With multipath and column path algorithms, two of the
four consumption channels are dedicated for the two dis-
tinct types of multicast messages. The remaining two may be
used by either type of message depending on the availability.

Our simulations model the source congestion caused by
the multicast communication accurately. In some of our
simulations, we have modeled the message injection or
preparation delay, which consists of partitioning the desti-
nation set into appropriate subsets and creating multiple
copies of the message (as needed, depending on the algo-
rithm); this requires modeling the delay in the processor,
memory and network interface components of a node. To
account for the message preparation time, we have run ad-
ditional simulations with two sets of injection delays. In
one case, the multipath, column-path, and e-mcast were
simulated with injection delays of 25, 50, and 50 cycles, re-
spectively. In the other case, they are simulated with 50,

100, and 100 cycles. In both cases, the individual algorithm
has an injection delay of five cycles. These delays represent
the relative times required by different algorithms to parti-
tion destinations into distinct subsets. The column path and
the e-mcast algorithms have the most complicated proce-
dures to partition the destinations, while the individual has
the easiest procedure. The impact of creating multiple cop-
ies on message latencies depends to a large extent on how
these copies are created. For example, if all copies must be
generated before any of them can leave the source node,
then all algorithms incur huge delays. The best among the
four algorithms will be the multipath, since it requires
fewer copies to be generated. On the other hand, one can
assume that the time to prepare the first few copies (say,
two) is significant, and that the other copies can be pre-
pared while the first few copies are routed out of the source
node. This is a reasonable assumption since, in any case, the
later copies need to wait until the first few copies are routed
out of the source node. In other words, preparation of later
copies and routing of earlier copies can take place simulta-
neously to reduce congestion at the source node. Under this
assumption, all four multicast algorithms will have very
similar message copying delays. Hence, we did not model the
delay to create message copies in our simulations.

We use throughput and average message latency as the
performance metrics. Usually, throughput is the number of
messages delivered per cycle (MPC) by the network. (A
multicast message is said to be delivered only if each and
every copy of the message has been consumed by their re-
spective last destinations.) We have used a slightly modi-
fied version of the throughput to facilitate some form of
comparison among simulations with varying number of
destinations and message sizes. The throughput we have
used is the product of MPC, average number of destina-
tions, and message size. For example, if a multicast message
of 20 flits with 10 destinations has been delivered to all of
its destinations, then its contribution to the throughput is
20 � 10 = 200. The number of copies used or hops taken to
achieve this multicast operation are not used in throughput
computations. The message latency is defined as the num-
ber of cycles elapsed from the time a message is injected to
the earliest time when each and every destination of the
message has received a copy. The latency includes the time
spent in the source by messages and captures the conges-
tion at the source of a multicast message for algorithms
such as the column path, which uses multiple copies.

Each latency and throughput value reported in the simula-
tion results is obtained by averaging the values from at least
four simulation samples, each with distinct random number
sequences. The 95 percent confidence interval widths for la-
tencies and throughputs prior to saturation are within 10 per-
cent of the reported mean values.

4.1 Performance Under Multicast Traffic
We have conducted several simulations with multicast traf-
fic only. This traffic pattern is not representative of any re-
alistic communication in MPPs. The purpose is to see how
well a routing algorithm performs under intensive multi-
cast traffic and also to provide a basis for comparison with
the results reported in literature.
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First, we have fixed the number of average destinations
at 10—uniformly distributed with a range of 1 through 19—
and the message size at 20 flits. The destinations are ran-
domly selected. We did not use any injection delay for these
initial simulations. We have used one, two, and four virtual
channels per physical channel, and two, and four con-
sumption channels per node. Figs. 7, 8, 9, and 10 contain the
results of these simulations. The multipath algorithm has
much lower latencies than the other three algorithms. The
higher latencies for the other three algorithms are mainly
due to source congestion.

We use the notation vicj to indicate the simulation results
with i virtual channels per physical channel and j con-
sumption channels per node. Comparing the v1c2 (Fig. 7)
and v2c2 (Fig. 8) cases, we see that increasing the virtual
channels yields improved throughput for the individual
and column path algorithms. To understand this observa-
tion, we define the v-c ratio as the ratio of the number of
virtual channels to the number of consumption channels. In
an 8 � 8 mesh, there are 64 nodes and 448 physical channels.
For the v1c2 simulations, 64 � 2 = 128 consumption chan-
nels are used and 448 � 1 = 448 virtual channels are used.
Thus, the v-c ratio for this case is 448/128 = 3.5. For the

v2c2 case, the provided v-c ratio is seven. The v-c ratio used
by an algorithm is simply the average number of hops it
uses to serve a destination. The individual, column path,
e-mcast, and multipath algorithms use an average of 5.35,
3.76, 3.72, and 2.81 hops, respectively, to serve a destination.
(These numbers are obtained from the simulations used in
this study.) If the used v-c ratio differs substantially from the
v-c ratio provided by the network, then either virtual channel
or consumption channel congestion is likely to occur. We
believe that the v-c ratio may be used as a rule of thumb in
designing a network. However, the optimal ratio depends on
the traffic that needs to be handled by the network.

For the v1c2 case (Fig. 7), the provided v-c ratio (which is
3.5) and the used v-c ratios indicate that the virtual channel
congestion is more severe with the individual and column
path algorithms. So, increasing the number of virtual chan-
nels provides the most benefit for these two algorithms.
Similar observations hold for the v2c4 and v4c4 cases. The
performance of e-mcast degrades with four virtual chan-
nels, since the v-c ratio changes from 3.5 to 7.0. Since each
consumption channel in the e-mcast algorithm may be used
only by a specific type of incoming message, congestion on
consumption channels at destination nodes results in wastage

Fig. 7. Performance for all multicast traffic with one virtual channel per
physical channel, two consumption channels per node, 20-flit messages,
an average of 10 destinations per multicast, and no injection delays.

Fig. 8. Performance for all multicast traffic with two virtual channels per
physical channel, two consumption channels per node, 20-flit messages,
an average of 10 destinations per multicast, and no injection delays.

Fig. 9. Performance for all multicast traffic with two virtual channels per
physical channel, four consumption channels per node, 20-flit messages,
an average of 10 destinations per multicast, and no injection delays.

Fig. 10. Performance for all multicast traffic with four virtual channels per
physical channel, four consumption channels per node, 20-flit messages,
an average of 10 destinations per multicast, and no injection delays.
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of the virtual channel bandwidth. This results in perform-
ance degradation. Additional experiments with lower pro-
vided v-c ratios indicate that e-mcast does improve its per-
formance from the v1c4 case (not reported here), which has a
v-c ratio of 1.75, to the v2c4 case. Destination congestion is not
a severe problem for the column path, since it has two con-
sumption channels used for breaking deadlocks and two con-
sumption channels shared among all incoming messages.

The column path offers the following advantages. Com-
pared to the multipath, message copies use shorter paths;
so, resources are held for shorter times, which leads to bet-
ter throughputs. Compared to the e-mcast, fewer consump-
tion channels are needed to avoid deadlocks; so, it performs
well even with a small number of consumption channels.
Compared to the individual, fewer message copies are
used; so, source congestion is reduced. Its disadvantages
include longer header preparation time compared to the in-
dividual and multipath and more severe source congestion
compared to multipath, which lead to higher latencies. The
e-mcast is similar to the column path. However, it requires
more consumption channels to see any performance bene-
fits over the column path.

To see the performance variation with respect to the num-
ber of destinations, message sizes, and injection delays, we
have conducted additional simulations by fixing the number
of virtual channels per physical channel at two, and the num-
ber of consumption channels per node at four. We have used
only the column path, e-mcast, and multipath algorithms in
these simulations. Figs. 11 and 12 report the simulations with a
message size of 20 flits, 0-cycle injection delay, and an average
of 20 or 30 destinations (with uniform distribution) per mes-
sage. As before, destinations are randomly selected. Compared
to the case with 10 destinations given in Fig. 9, the throughput
increases substantially, since fewer hops are used per destina-
tion. The multipath offers lower latencies, and the column
path offers substantially higher throughputs.

In the next set of simulations, we have fixed the average
number of destinations at 10 and varied the message sizes
from 20 to 100, 500, and 1,000 flits. Fig. 9 gives the results
for 20-flit messages, while Figs. 13, 14, and 15 report these
results for 100-, 500-, and 1,000-flit messages, respectively.
With increasing message sizes, the multipath becomes more
attractive in terms of latencies. With respect to throughput,
however, the column path or e-mcast are preferable.

To see the impact of injection delays on message laten-
cies and throughputs, we have conducted simulations by
modeling the header preparation time as an additional de-
lay incurred at the time of injecting a multicast message
into the network. Fig. 16 gives the results with injection
delays for the 5-25-50 case (injection delays of 5, 25, 50, and
50 cycles are assumed for the individual, multipath, column
path, and e-mcast algorithms). Fig. 17 gives the results for
the 5-50-100 case (5, 50, 100, and 100 cycles of injection de-
lay for the individual, multipath, column path, and e-mcast
algorithms). All algorithms have latencies closer to the in-
dividual. If the header partition time is large but creating
message copies is small or negligible, then individual is
competitive with the more sophisticated multicast tech-
niques. If creating message copies requires a large amount
of time, then the multipath algorithm performs better than

the other algorithms. If throughput is the main criterion of
performance, the column path is a better choice.

4.2 Performance Under Unicast and Multicast Traffic
In the final set of simulations, we have considered a mix-
ture of unicast and multicast traffic; 90 percent of all mes-
sages injected are unicast messages and the rest 10 percent
are multicast messages. A multicast message has an average
of five destinations (modeled using uniform distribution).
This traffic pattern could be representative of communica-
tion in cache-coherent shared memory multiprocessors; the
majority of traffic is due to remote fetches of cache blocks
and the rest is a mixture of traffic for invalidations of
shared cache blocks and synchronizations.

Unicast messages are also routed using the multicast
technique simulated. Using one type of algorithm for unicast
and another for multicast (for example, e-cube for unicasts
and multipath for multicasts) could lead to deadlocks on
virtual channels. We have used two virtual channels per
physical channel, four consumption channels per node, 20-
flit messages, and 5-25-50 injection delays. The correspond-
ing simulation results are given in Fig. 18. In this case, all
algorithms perform similarly, with multipath having a
slightly lower latency and lower throughput. The individual

Fig. 11. Performance for all multicast traffic with two virtual channels per
physical channel, four consumption channels per node, 20-flit messages,
no injection delays, and an average of 20 destinations per multicast.

Fig. 12. Performance for all multicast traffic with two virtual channels per
physical channel, four consumption channels per node, 20-flit messages,
no injection delays, and an average of 30 destinations per multicast.
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is competitive with the column path and e-mcast algorithms
in terms of both latency and throughput.

5 SUMMARY AND CONCLUDING REMARKS

Recently, much attention has been focused on designing
deadlock-free routing algorithms for multicast communica-
tion. Thus far, only deadlocks due to dependencies on
communication channels and buffers has been addressed.
In this paper, we have shown that the dependencies on con-
sumption channels are a fundamental issue in the design of
multicast algorithms for wormhole networks. Whenever a
multicast algorithm allows a message to hold consumption
channels and reserve additional communication channels,
deadlocks can occur.

We have also shown that deadlocks on consumption
channels may be resolved using multiple virtual consump-
tion channels time-multiplexed on a single physical con-
sumption channel. This issue is similar to that of avoiding
deadlocks on communication channels with multiple vir-
tual channels. We have given upper bounds on the number
of consumption channels required to avoid deadlocks.

Specialized multicast routing algorithms tend to be in-
compatible with e-cube routing and cannot take advantage

of the results and techniques developed for unicast routing.
Our approach in this paper has been to use simple tech-
niques that are compatible with e-cube to provide multicast
routing. We have considered two simple multicast routing
algorithms for mesh networks that are deadlock free when
two or more virtual consumption channels are used. One of
them, called individual, uses one unicast message for each
destination of a multicast message. This is the most com-
monly used method for multicast communication in the
current parallel processors. In order to contain the problem
of the number of copies generated for a multicast operation
by the individual, we have proposed a new approach called
the column path routing. The column path follows row-
column or e-cube routing method and, hence, is compatible
with the routing mechanism in, for example, the Intel Para-
gon and Cray T3D parallel computers.

The individual, Hamiltonian-path-based, dual-path, and
multipath, and the column path algorithms offer different
trade-offs in terms of performance and implementation.
The individual is simplest to use but causes congestion at
sources of multicast messages if each message has many
destinations. The column path requires simple changes to

Fig. 13. Performance for all multicast traffic with two virtual channels per
physical channel, four consumption channels per node, 100-flit messages,
an average of 10 destinations per multicast, and no injection delays.

Fig. 14. Performance for all multicast traffic with two virtual channels per
physical channel, four consumption channels per node, 500-flit messages,
an average of 10 destinations per multicast, and no injection delays.

Fig. 15. Performance for all multicast traffic with two virtual channels per
physical channel, four consumption channels per node, 1,000-flit mes-
sages, an average of 10 destinations per multicast, and no injection delays.

Fig. 16. Performance for all multicast traffic with two virtual channels
per physical channel, four consumption channels per node, 20-flit
messages, an average of 10 destinations per multicast and injection
delays of 5, 25, 50, and 50 cycles for the individual, multipath, column
path, and e-mcast algorithms.
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e-cube routing and two virtual or physical consumption
channels for deadlock free operation. But it reduces source
congestion substantially. The dual-path and multipath algo-
rithms virtually eliminate source congestion but tend to use
long message paths. In the worst case, a 2D mesh is used as
a collection of linear chains. The column path algorithm is a
compromise between the individual and the Hamiltonian-
path techniques.

We have investigated the performances of four algo-
rithms— individual, multipath, and an e-cube based multi-
cast (e-mcast)—for multiple multicasts and a mixture of
multicasts and unicasts using simulations. Our results show
that, in most cases, the column-path routing offers higher
throughputs compared to the other routing algorithms. In
terms of metrics, such as average additional traffic (used in
[17]), individual, column path, and e-mcast are worse than
the Hamiltonian-path-based, dual-path, and multipath al-
gorithms. But in terms of metrics, such as network through-
put, the column path performs better than the dual-path and
multipath algorithms. (See [3] for a comparison of the col-
umn path and dual-path algorithms.) However, column

path, e-mcast, and individual incur higher average latencies
than multipath; this increase in average latencies for col-
umn path and e-mcast is partly due to the higher message
preparation latencies (since destinations need to be sorted
in a specific order), and partly due to source congestion
resulting from the use of multiple message copies. So, the
multipath algorithm may be a good choice when the aver-
age latency is important (as when invalidation messages in
shared memory multiprocessors are sent as multicast mes-
sages). For infrequent multicasts with a small number of
destinations, however, our simulations show that the sim-
plistic approach of sending one copy to each destination
performs as well as the other schemes studied in this paper.
In such cases, implementing multicast protocols in hard-
ware may not be necessary.

Our results can be easily extended to multidimensional
meshes and tori. The column path algorithm is based on a
form of multicast primitive: column broadcast. In future,
we will consider other multicast primitives, such as sub-
cube broadcasting to design better multicast algorithms.
This work can be expanded on in several directions. Theo-
retical results on lower bounds for consumption channels
needed to avoid deadlocks will be interesting. The focus of
this paper is e-cube compatible multicast routing algo-
rithms. So, an interesting direction for further work is the
impact of adaptivity on the consumption channel require-
ments and on reducing the source congestion for the col-
umn path and related algorithms.
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