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ABSTRACT

As parallel machines scale to one million nodes and beyond, it
becomes increasingly difficult to build a reliable network that is
able to guarantee packet delivery. Eventually large systems will
need to employ fault-tolerant messaging protocols that afford
correct execution in the presence of a lossy network. In this paper
we present a lightweight protocol that preserves message idempo-
tence and is easy to implement in hardware. We identify the re-
quirements for a correct implementation of the protocol. Experi-
ments are performed in simulation to determine implementation
parameters that optimize performance. We find that an aggressive
implementation on a fat tree network results in a slowdown of less
than 2x compared to buffered wormhole routing on a fault-free
network.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network Proto-
cols — Protocol Architecture; C.4 [Performance of Systems]:
Fault tolerance

General Terms
Performance, Design, Reliability.

Keywords

idempotence, source-reliable messaging, block-structured traces.

1. INTRODUCTION

In large parallel machines, the implementation of the network has
a first order effect on the performance characteristics of the sys-
tem. Both the network topology and the messaging protocol must
be carefully chosen to suit the needs of the architecture and its
target applications. One of the first decisions that designers must
face is whether the network or the processing nodes should be
responsible for guaranteeing the successful delivery of a message.
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If it is the network’s responsibility, then packets injected into
the network are precious and must not be corrupted or lost under
any circumstances. Network nodes must contain adequate storage
to buffer packets during congestion, and some strategy is required
to prevent or recover from deadlock. The mechanical design of
the network must afford an extremely low failure rate, as a single
bad component or connection can result in system failure. Many
fault-tolerant routing strategies alleviate this problem somewhat
by allowing the system to tolerate static detectable faults at the
cost of increased network complexity and often reduced perform-
ance. Dynamic or undetected faults, on the other hand, remain a
challenge, although techniques have been described to handle the
dynamic failure of a single link or component [11, 9, 15].

If, on the other hand, responsibility for message delivery is placed
on the processing nodes, network design is simplified enor-
mously. Packets may be dropped if the network becomes con-
gested. Components are allowed to fail arbitrarily, and may even
be repaired online so long as at least one routing path always ex-
ists between each pair of nodes. Simpler control logic allows the
network to be clocked at a much higher speed than would other-
wise be possible [3].

The cost, of course, is a more complicated messaging protocol
which requires additional logic and storage at each node, and
reduces the performance of the system. Thus, with few nodes
(hundreds or thousands), it is likely a good tradeoft to place extra
design effort into the network and reap the performance benefits
of guaranteed packet delivery. However, as the scale of the ma-
chine increases to hundreds of thousands or even millions [19] of
nodes and the number of discrete network components is similarly
increased, it becomes extremely difficult to prevent electrical or
mechanical failures from corrupting packets within the network.
There is therefore a growing motivation to accept the possibility
of network failure and to develop efficient end-to-end messaging
protocols.

Any fault-tolerant messaging protocol must have the follow-
ing two properties:

delivery: All messages must be successfully delivered at
least once.
idempotence:  Only one action must be taken in response to a

given message even if duplicates are received.

Additionally, for a protocol to be scalable to large systems, it
should exhibit these properties without storing global information
at each node (e.g. sequence numbers for packets received from



every other node). In light of this restriction, the idempotence
property becomes more of a challenge.

In this paper we introduce a lightweight fault-tolerant idempotent
messaging protocol that is easy to implement in hardware and
does not require global information to be stored at each node.
Each communication is broken down into three packets: the mes-
sage, sent from sender to receiver, the acknowledgement, sent
from receiver to sender to indicate message reception, and the
confirmation, sent from sender to receiver to indicate that the
message will not be re-sent. It will be seen that this three-part
messaging arises naturally and we will show that it is not possible
to reduce the number of messages without storing global informa-
tion at each node.

The next section develops the idempotent messaging protocol in
detail and describes the actual hardware requirements. In Section
3 we present the simulation environment used in our experiments.
The results obtained from simulating several micro-benchmarks
are analyzed in Section 4, where we attempt to determine imple-
mentation parameters that optimize performance, and we compare
the performance of the protocol to that of buffered wormhole
routing on a fault-free network. In Section 5 we discuss previous
work and some existing fault-tolerant messaging protocols. We
offer our conclusions in Section 6.

2. IDEMPOTENT MESSAGING

The following sections develop the idempotent messaging proto-
col and outline its hardware requirements. For the most part the
protocol arises fairly naturally from the delivery and idempotence
requirements as well as the restriction that global information may
not be stored at each node. There are some subtleties, however,
that must be addressed in order to ensure correctness. We begin
with the assumption that the network does not reorder packets; in
Section 2.3 we will see how this restriction can be relaxed.

2.1 Basic Requirements

The message-acknowledge pair is fundamental to any end-to-end
messaging protocol. The sender has no way of knowing whether
or not a message was successfully delivered, so it must remember
and periodically re-send the message until an acknowledgement
(ACK) is received at which point it can forget the message.

Because a message can be sent (and therefore received) multiple
times, the receiver must somehow remember that it has already
acted on a given message in order to preserve message idempo-
tence. One approach, used in the TCP protocol [24], is to sequen-
tially generate packet numbers for every sender-receiver pair;
each node then remembers the last packet number that it received
from every other node. This approach is feasible with thousands
of nodes, but the memory requirements are likely to be prohibitive
in machines with millions of nodes.

Without maintaining this type of global information at each node,
the only way to ensure message idempotence is to remember indi-
vidual messages that have been received. To ensure correctness,
each message must be remembered until a guarantee can be made
that no more duplicates will be received. This, however, depends
on a remote event, specifically the successful delivery of an ACK
to the sender. Only the sender knows when no more copies of the
message will be sent, and so we require a third confirmation
(CONF) packet to communicate this information to the receiver.

We thus have our three-part idempotent messaging protocol. The
sender periodically sends a message (MSG) until an ACK is re-
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Figure 1: Idempotent messaging example

ceived, at which point it can drop the message. Once a message is
received, the receiver ignores duplicates and periodically sends
back an ACK until a CONF is received, at which point it can for-
get about the message. Finally, each time that a sender receives
an ACK it responds with a CONF to indicate that the message
will not be resent. This is illustrated in Figure 1, which shows
how the protocol is able to deal with arbitrary packets being lost.

2.2 Message Identification

Each message must be assigned an identifier (ID) that can be
placed in the ACK and CONF packets relating to that message.
On the sending node the ID is sufficient to identify the message;
on the receiving node the message is uniquely identified by the
pair (source node ID, message ID). Figure 2 shows the structure
of an ACK/CONF packet.

| header | source node ID | message ID

Figure 2: ACK/CONF packet structure

A header field is present in all packets and contains the packet
type and routing information. The source node ID field identifies
the node which sent the packet; for a CONF this is combined with
the message ID field at the receiving node to uniquely identify the
message, and for an ACK it provides the destination for the
CONEF response (note that this information must be stored in the
ACK and cannot simply be remembered with the original message



sender receiver
ACK7

(a) Receiver sends ACK to message with ID =7

-\4

(b) Sender forgets MSG and sends CONF. Network
drops CONF. Receiver re-sends ACK.

:

{ ACK 7

S{MSG7 F-~,
[Ms67] ) _ 4
LA™ 7N

(¢) While ACK is in transit, sender re-uses ID 7 for a new
message which is dropped by the network.

CONF 7

?

(d) Sender receives ACK and forgets the new message,
thinking it has been received.

Figure 3: Failure resulting from message ID reuse

since the message is discarded when the first ACK is received, but
multiple ACKs may be received).

The ACK and CONF packets represent the overhead of the idem-
potent messaging protocol, and as such it is desirable to make
them as small as possible. It is tempting to try to use short (say 4-
8 bit) message IDs and simply ensure that, on a given sending
node, no two active messages have the same ID. Unfortunately,
this approach fails because a message is “active” until the CONF
is received, and there is no way for the sending node to know
when this occurs (short of adding a fourth message to the proto-
col). Figure 3 shows how a message can be erroneously forgotten
if message ID’s are reused too quickly.

It is therefore necessary to use long message ID’s so that there is a
sufficiently long period between ID reuse. It is difficult to quan-
tify “sufficiently long” since a message can, in theory, be active
for an arbitrarily long time if the network continually drops its
CONF packets. One possible strategy is to use 54 bit IDs so that
an ACK fits into 96 bits with up to one million nodes, then drain
the network by suppressing new messages once every month of
operation.

The next temptation is to eliminate the source node ID field and
shorten the message ID field in CONF packets only. This can be
achieved by assigning to messages short secondary ID’s on the
receiving node so that CONF packets consist of only a header
field and this secondary ID (the source node ID is no longer nec-
essary since the secondary ID’s are generated by the receiving
node). Regrettably, this also fails when secondary ID’s are reused
prematurely. Figure 4 shows how a message can lose its idempo-
tence when this occurs.

Thus, while one would like to be able to use short message IDs to
reduce the size of ACK and CONF packets, we see that to do so is
to sacrifice correctness.
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(e) Receiver receives CONF and forgets MSG 9, thinking
that it will not be resent. Meanwhile, sender does re-
send MSG 9, and idempotence is lost.

Figure 4: Failure resulting from secondary ID reuse

2.3 Out of Order Messages

The assumption that no more duplicate messages will be delivered
once a CONF has been received is true only if packets sent from
one node to another are received in the order that they were sent.
If the network is permitted to reorder packets then the messaging
protocol can fail as shown in Figure 5.

This problem can be fixed as long as the amount by which two
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(a) Sender resends message just before receiving ACK

-

(b) Sender forgets MSG and sends CONF.

MSG 7 —>{ CONF 7

(¢) Network reorders MSG and CONF. Receiver forgets
MSG when it receives CONF, then idempotence is
lost when duplicate MSG is received.

?

Figure 5: Failure resulting from packet reordering



packets can slip relative to one another is bounded. Suppose
packets A, B are sent from one node to another in that order; let T
be the maximum time in cycles that packet B can be received
before packet A. We modify the protocol by having the receiver
remember a message for T cycles after the CONF is received.
Since any duplicate message would have been sent before the
CONEF, by choice of T it is safe to forget the message after T cy-
cles have elapsed.

A simple way to ensure that the bound T exists is to place an up-
per bound on the amount of time that a packet may spend in the
network. This can be accomplished either by assigning packets a
time to live as in TCP [24], or by limiting the number of cycles
that a packet may be buffered by a single network node before it
is dropped. The latter approach is simpler as it does not require
transmitting a time to live with each packet; it can be used in any
network in which the length of the path taken by a packet is
bounded.

2.4 Hardware Requirements

In addition to the control logic needed to implement the protocol,
the primary hardware requirements are two content addressable
memories (CAMs) used for remembering messages. The first of
these remembers messages sent, stores {message ID, message
index} on each line, and is addressed by message ID. “message
index” locates the actual message and is used to free resources
when an ACK is received. The processor is prohibited from gen-
erating new messages if this send table fills, and must stall if it
attempts to do so until an entry becomes available. The second
CAM remembers messages received, stores {source node ID,
message ID} on each line and is addressed by (source node ID,
message ID). No additional information is required in this CAM
since the receiver simply needs to know whether or not a particu-
lar message has already been received. If this table is full, new
messages received from the network are dropped.

3. SIMULATION ENVIRONMENT

Our evaluation of the idempotent messaging protocol was con-
ducted using a trace-driven network simulator. In this section we
describe the machine model that was used, the format of the traces
and how they were obtained.

3.1 Hardware Model

Our hardware model is a distributed shared memory machine with
explicitly split-phase memory operations. Memory consistency is
enforced in software using a wait instruction which causes a
thread to wait for all outstanding memory operations to complete
before continuing. We do not model caching of remote data
(which does not affect our results as all micro-benchmarks explic-
itly migrate data to where it is needed). Pointers contain node and
offset fields; distributed objects are implemented by allocating the
same range of offsets on each node.

We assume that the hardware supports efficient multithreading.
Processor nodes are multithreaded, and new threads may be cre-
ated with a single fork instruction. This instruction specifies a
starting address for the new thread, the node on which the new
thread should run, and a set of registers which should be copied
from parent to child.

Inter-thread synchronization is register-based. A thread can create
a join capability, a special pointer which allows other threads to
write directly to one of its registers using a hardware join instruc-
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tion. Presence bits associated with each register cause a thread to
stall when it attempts to read a register being used for synchroni-
zation; the thread will resume once the corresponding join is per-
formed and the data is available.

3.2 Block Structured Traces

Typically, the input to a trace-driven simulator is simply a set of
network messages where each message specifies a source node, a
destination node, the size of the message, and the time at which
the message should be sent. These traces may be obtained by
instrumenting actual parallel programs running on multiple real or
simulated processor nodes.

There are two problems with this straightforward approach. First,
in an actual program the time at which a given message is sent
generally depends on the time that one or more previous messages
were received. It is therefore inaccurate to specify this time a
priori in a trace. Second, a large parallel computer may not be
readily available, and the number of threads required to run a
parallel program on thousands of simulated nodes can easily over-
whelm the operating system.

We address the first problem by organizing the trace into blocks
of timed messages. Each block represents a portion of a thread in
the parallel program which can execute from start to finish with-
out waiting for any network messages. When a block is activated,
each of its messages is scheduled to be sent at a specified number
of cycles in the future. Each message optionally specifies a target
block to signal when the message is successfully delivered; a
block is activated when it has been signaled by all messages hav-
ing that block as a target. This block-structured trace captures the
dependency graph of messages within an application, and allows
the simulation to more accurately reflect the pattern of messages
that would arise from running the parallel program with a given
network configuration.

Block-structured traces are a similar to intrinsic traces [17], used
in trace-driven memory simulators to model programs whose
address traces depend on the execution environment. It has been
observed that trace-driven parallel program simulations can pro-
duce unreliable results if the traces are of timing-dependent code
[17, 16]; our micro-benchmarks and synchronization mechanisms
were therefore chosen to ensure deterministic program execution.

3.3 Obtaining the Traces

The second problem — the difficulty of simulating thousands of
nodes on a single processor — is addressed by our method of ob-
taining traces. We provide a small library of routines that imple-
ment the hardware model described in Section 3.1; these functions
are listed in Table 1. The routines are instrumented to transpar-
ently manage blocks, messages, and the passage of time. Most
importantly, they are designed to allow the program to run as a

Table 1: Simulation library functions

Function | Description

Load Load data from a (possibly remote) location
Store Store data to a (possibly remote) location
Wait Wait for all outstanding stores to complete
Fork Start a new thread of execution

Join Write data to another thread’s registers
Sync Register synchronization: wait for a join




void Fork (_thread t,
int node,

L)

/* thread entry point */
/* destination node */
/* other arguments */
int ComputeSum (Pointer data)
JCap *j = new JCap;

Fork (SumThread, 0, numNodes,
return Sync(3j);

data, Jj);

}

void SumThread (int cNodes, Pointer data, JCap *j)

?f (cNodes > 1)

int n = cNodes / 2;

JCap *jl1 = new JCap;

JCap *j2 = new JCap;

Fork (SumThread, node, n, data, jl);

Fork (SumThread, node+n, cNodes-n, data, j2);
Join(j, Sync(jl) + Sync(j2));

}

else

{

data.node = node;
Join(j, Load(data)) ;

}

Figure 6: Sample program to compute the sum of a distrib-
uted object with one word on each node. node and numNodes
are global variables.

single thread. This is primarily accomplished by implementing
the Fork routine using a function call rather than actually creating
a new thread. Figure 6 gives a very simple program written with
this library.

As an example of how the library routines are implemented, Fig-
ure 7 gives simplified code for Load. Two global variables, block
and node, are managed by the library routines and contain, respec-
tively, a pointer to the block corresponding to the current thread
of execution, and the processing node on which the thread is run-
ning. If the load is from local memory, the routine simply adds
time to the current block. If the load references a remote memory
location, a message is added to block representing the load re-
quest. The message’s destination is the remote node, and it sig-
nals a new block ref ' which contains a single message representing
the reply to the load request. The destination of the reply message
is node, and it signals a second new block next which represents
the continuation of the current thread once the value of the load
has been received (it is assumed that the current thread must wait
for this value — we are not taking prefetching into account). Fi-
nally, the current block is set to next.

The actual Load routine is slightly more complicated as it also
checks for address conflicts with outstanding stores. The Wait
routine is provided to enforce memory consistency by explicitly
waiting for all stores to complete before execution continues.

While the library routines automatically manage the passage of
time for the parallel primitives that they implement, it is the pro-
grammer’s job to manage the passage of time for normal compu-
tation. A macro is provided for adding time to the current block.
The programmer is responsible for making use of this macro and
providing a reasonable estimate of the number of cycles required
to perform a given computation.

3.4 Synchronization

In the simulation environment, register-based synchronization is
accomplished using the Sync and Join library routines. There are
no actual registers in the simulation, so Join is implemented by
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void Block::AddMessage
(int size,
int dst,
Block *target) ;

/* size of message */
/* destination node */
/* block to signal */

Word Load (Pointer p)

if (p.node == node)
block->time += LOCAL REF_TIME;
else

Block *ref =
Block *next =
ref->node = p.node;

next->node = node;

block->AddMessage (LOAD_SIZE, p.node, ref);
ref->AddMessage (REPLY_SIZE, node, next);
block = next;

new Block;
new Block;

}

return memory [p] ;

}

Figure 7: Load routine (simplified). block and node are
global variables.

storing a word of data in the join capability data structure (and
adding a message to the current block); Sync retrieves the word
from the data structure (and creates a new block).

Because the simulation is run as a single thread, the straightfor-
ward implementation of Sync will only work if the data is already
available, i.e. if the corresponding Join has already been called. If
all synchronization is from child to parent then this will always be
the case because implementing Fork using a function call causes
the “threads” to run to completion in a depth-first manner. Figure
6 gives an example of child to parent synchronization. While
each Fork conceptually creates a new thread, the single-threaded
implementation simply calls SumThread as a subroutine and then
returns, so Join will already have been called by the time the par-
ent thread calls the corresponding Sync.

To allow for more complicated synchronization wherein Sync
may be called before the corresponding Join, a version of Sync is
provided in which the programmer explicitly provides a continua-
tion. If the data is ready when Sync is called, then the continua-
tion is invoked immediately. Otherwise the continuation is stored
in the join capability data structure and invoked when the corre-
sponding Join is called (Figure 8). This sacrifices some of the

parent thread child threads continuation
A :
H A ! H
For%(A) « Join () s
Fork(B)—— ‘B:
S : C
ync ( ).‘

(a) Join called before Sync; continuation invoked by Sync

B :

Syné(C)

Fork(B)

4\

|
>

Fork(A)

Join ()

h 3

(b) Sync called before Join; continuation invoked by Join

Figure 8: Control flow of single-threaded simula-
tion with user-supplied continuations.



transparency of the simulation environment in order to retain the
benefits of being able to run the simulation using a single thread.

4. EXPERIMENTAL RESULTS

The purpose of our simulations is to explore the parameter space
of the idempotent messaging protocol and to compare its perform-
ance to that of buffered wormhole routing on a fault-free network.
The two parameters of interest are the strategy used for packet
retransmission and the size of the message tables. In the follow-
ing sections we present the micro-benchmarks and network mod-
els used in simulation, and we give the results of our experiments.

4.1 Micro-Benchmarks

Four micro-benchmarks were chosen to provide a range of net-
work usage patterns. Each one was coded as described in Section
3. The four resulting block-structured traces were used to drive
our simulations. The micro-benchmarks are as follows:

add: Parallel prefix addition on 4096 nodes with one word per
node. Light network usage. Network is used for synchronization
and thread creation.

reverse: Reverse the data of a 16K entry vector distributed across
1024 nodes. Very heavy network usage with almost all messages
crossing the bisection.

quicksort: Parallel quicksort of a 32K entry random vector on
1024 nodes. Medium, irregular network usage (lighter than re-
verse or nbody due to a higher computation:communcation ratio).

nbody: N-body simulation on 256 nodes with one body per node.
Computation is structured for VN communication by conceptually
organizing the nodes in a square array and broadcasting the loca-
tion of each body to all nodes in the same row and column.
Heavy but regular network usage.

4.2 Network Model

In an attempt to ensure that our results are independent of the
network topology, three different topologies are used in all simu-
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lations: a 2D grid, a 3D grid, and a fat tree where each parent
node connects to four child nodes and bandwidth doubles with
each step up the tree. For the grid networks dimension-ordered
routing is preferred, but any productive channel may be used to
route the packet. In all cases wormhole routing is used, with
packet heads advancing one step per cycle. If a packet cannot be
advanced due to congestion, it is dropped. This, combined with
the fact that the distance between a given pair of nodes is fixed,
ensures that the network will not reorder packets. Flits are 32 bits
wide, and each packet ends with a checksum flit. ACK and
CONF packets are four flits each (including the checksum).

4.3 Packet Retransmission

In order for the idempotent messaging protocol to function cor-
rectly, it is necessary to periodically retransmit MSG and ACK
packets. When such a packet is sent, it should be scheduled for
retransmission at

size + 2 x distance + ACK_SIZE + backoff

cycles in the future. The first three terms in this sum represent the
amount of time it takes to receive an ACK/CONF packet if the
receiving node is able to reply immediately and if neither packet
is dropped by the network. The backoff term is a function of the
number of transmit attempts for the packet (), and represents the
strategy being used to manage network congestion.

Four backoff terms were considered: constant (C), linear (Cn),
quadratic (Crn?) and exponential (C:2"). We do not present results
for constant or exponential backoff as their performance was un-
acceptable. A constant backoff is intuitively bad as it makes no
attempt to manage congestion, and indeed in simulation it often
caused livelock when the network became congested. Exponen-
tial backoff was found to be overkill; in a congested network
packets were often rescheduled with large delays and as a result
performance suffered.

Figure 9 shows plots of execution time for all four micro-
benchmarks on all three topologies with both linear and quadratic
backoff as the retransmission constant C is varied from 1 to 32.
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Figure 9: Execution time in cycles vs. retransmission constant C for linear (
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Figure 10: Average message retransmission vs. re-
transmission constant C for reverse on a 3D Grid.

We see that quadratic backoff performs well with small C,
whereas linear backoff requires large C unless the network is
lightly loaded (compare the linear backoff curves for quicksort on
the three topologies; 2D Grid has the smallest capacity and Fat
Tree has the largest capacity). Intuitively this indicates that linear
backoff is not quite enough; further evidence supporting this intui-
tion is provided by graphing average message retransmission
against C for linear and quadratic backoff. Figure 10 shows this
graph for reverse on a 3D Grid; the corresponding graphs for
other micro-benchmarks and topologies are nearly identical with
varying vertical scales. We see that the number of message
transmissions is much larger when linear backoff is used, indicat-
ing that the available network bandwidth is not being used effi-
ciently.

It is difficult to determine from inspecting the graphs which re-
transmission strategy is “best”. Resorting to numerical analysis,
we asked the question of which strategies provided closest-to-
optimal performance in the worst and average cases (where “op-
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Figure 11: Execution time vs. send table size

timal” refers to the best observed performance for a given bench-
mark/topology combination). We found quadratic backoff with C
= 3 to be superior under both metrics, performing within 28% of
optimal in the worst case and within 7% of optimal in the average
case. We therefore use these settings for the remainder of the
simulations.

4.4 Table Size

The next important implementation parameter is the size of the
tables used to remember messages that have been sent/received.
There is a tradeoff between performance and implementation cost
since the tables require expensive content addressable memory,
but if a table fills up it will temporarily prevent new messages
from being sent or received. Note that having a receive table fill
up is much worse than having a send table fill up as it will cause
messages to be dropped affer they have traversed the network,
which wastes network bandwidth. Accordingly, in the simula-
tions we use receive tables which are twice as large as the send
tables.

In Figure 11 execution time is graphed for all micro-benchmarks
and topologies as send table size is varied from 2° to 2'°. In most
cases execution time quickly drops to a minimum, and we can
achieve near-optimal performance with as few as 8 send and 16
receive table entries. The exception is reverse, where execution
time actually increases with larger table sizes. This is due to the
increased network congestion that results when nodes are able to
send more messages.

We note for the sake of completeness that when the send and
receive tables are the same size the graphs rapidly approach the
same minima, but the initial slope is much steeper and perform-
ance is 20-30% worse for tables sizes of 1, 2 and 4.

70000 - reverse

60000 -
50000 -
40000 -
30000 -

20000 . .——./.\./._./'_'_'_H

10000 -

700000 -
600000 -
500000 -
400000 -
300000 -
200000 -
100000 -

0 — 77—
1 4 16 64 256 1024

2D Grid —=— 3D Grid —a— Fat Tree




Table 2a: Slowdown of idempotent messaging protocol compared to buffered wormhole routing on a perfect network

topology: 2D Grid 3D Grid Fat Tree
buffered | idempotent | slow- | buffered | idempotent | slow- | buffered | idempotent | slow-
(cycles) (cycles) down | (cycles) (cycles) down | (cycles) (cycles) down
add 814 1229 | 1.51 645 986 | 1.53 634 991 | 1.56
reverse 8198 60548 7.39 3333 24799 7.44 717 2701 3.77
quicksort 195356 496306 2.54 124230 232580 1.87 96745 167438 1.73
nbody 119528 463741 3.88 79493 241771 3.04 97720 229111 2.34

Table 2b: Slowdown when 40 bit flits and a 60% faster clock are used for the idempotent messaging protocol

topology: 2D Grid 3D Grid Fat Tree
buffered | idempotent | slow- | buffered | idempotent | slow- | buffered | idempotent | slow-
(cycles) (cycles) down | (cycles) (cycles) down | (cycles) (cycles) down
add 814 848 1.04 645 709 1.10 634 637 1.00
reverse 8198 30053 3.67 3333 13931 4.18 717 1421 1.98
quicksort | 195356 285565 | 1.46 | 124230 147229 | 1.19 96745 113460 | 1.17
nbody 119528 265500 | 2.22 79493 137627 | 1.73 97720 131092 | 1.34

4.5 Performance Comparison

As stated in the introduction, for small systems it is probably
worth constructing a reliable network, whereas for extremely
large systems it is almost certainly necessary to implement a fault-
tolerant messaging protocol. In between these extremes, however,
it may be difficult to determine which approach is more appropri-
ate, and it becomes useful to know the performance impact of an
idempotent messaging protocol.

To compare the two approaches, we simulated a perfect network
with buffered wormhole routing. Each network link contains
enough storage to buffer an entire packet, so when the network is
congested packets are stored rather than dropped. We assume that
nodes always have enough available resources to accept incoming
packets. For the grid networks, strict dimension-ordered routing
is used to avoid deadlocks [7]. Because the network is assumed to
be perfect, the checksum flit is omitted. The idempotent messag-
ing protocol was simulated using 16-entry send tables and 32-
entry receive tables.

The results of the comparison are shown in Table 2a. We see that
the actual slowdown, which ranges from as little as 1.53 to as
much as 7.44, depends on both the application and the network
topology. In general, a more congested network leads to greater
slowdowns. Note that in our simulations we are assuming that the
flit size and cycle times of the two networks are the same. In
practice this would likely not be the case for three reasons. First,
the control logic of the lossy network is much simpler than that of
the lossless network; as a result it will be possible to clock the
lossy network at a higher speed [3]. Second, with a fault-tolerant
messaging protocol and enough checksum bits it is possible to
boost the clock speed even further since one does not need to
worry about introducing the occasional signaling error so long as
it can be detected. Finally, in the lossless network a number of
bits would need to be added to each flit for the purposes of error
correction. For example, at least 10 extra bits are required in
order to perform double error correction on 32 bit flits. Thus, if
both networks are built using the same number of physical bits per
connection, the lossy network will have larger flits.

If we again compare the two approaches under the assumptions
that the fault-tolerant network has flits which are 25% larger and a
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clock that runs 60% faster, we obtain the results shown in Table
2b. In this case the slowdowns are far less severe, and are less
than 2x across all micro-benchmarks on the fat tree network.

5. RELATED WORK

The protocol described in this paper was first reported in [28]; it
was implemented as part of a faulty network simulation in [29].

The practice of discarding packets is common among WAN net-
working technologies such as Ethernet [21] and ATM [27]; end-
to-end protocols such as TCP [24] are required to ensure reliable
message delivery over these networks. However, WAN-oriented
protocols generally require total table storage proportional to N’
for N inter-communicating nodes [11, 8], and are therefore poorly
suited to large distributed shared-memory machines.

Only a few parallel architectures feature networks which may
discard packets; among these exceptional cases are the BBN But-
terfly [25], the BBN Monarch [26], and the Metro router architec-
ture [4]. Each of these implements a circuit-switched network
which discards packets in response to collisions or network faults.

While specific types of operations may be transformed into idem-
potent forms for repeated transmission over unreliable networks
[13], no general mechanism providing lightweight end-to-end
idempotence has previously been reported. As a result, most par-
allel architectures have implemented non-discarding networks
which take responsibility for message delivery [18, 22, 6]. Such
networks can only tolerate limited types of network failure.

Many parallel networks can be configured to route around static
faults, e.g. the Cray T3D [5]. By contrast, very few networks are
able to handle dynamic faults, but examples do exist: the SGI
Spider router [15] can detect and disable failing links at runtime,
and the Reliable Router chip [9] can tolerate the dynamic failure
of individual links or components. The RR chip uses a link-level
protocol, the Unique-Token Protocol (UTP) [11], which has two
interesting similarities to our lightweight idempotence protocol:
first, as with our protocol, the UTP requires receiving nodes to
detect and ignore duplicate copies of a message; second, the UTP
uses a four-step handshake between router chips which is rather
similar to our protocol's three-step end-to-end handshake. Neither



the Reliable Router nor the Spider router are able to handle multi-
ple dynamic failures.

Non-discarding networks often suffer from congestion problems
which can fill the network with undelivered messages [12, 23, 20,
6]. Both link-level [1] and end-to-end [2, 14] protocols have been
proposed which improve system performance by limiting message
injection rates; the end-to-end flow control protocol uses a two-
message handshake identical to the first two messages of our
three-message handshake. By contrast, discarding networks do
not experience “traffic jams” in the network, and with an appro-
priate backoff strategy may even outperform non-discarding net-
works under certain high-load conditions [25, 10].

Non-discarding networks rely on topological constraints and vir-
tual channels to avoid deadlock [7, 8]. However, virtual channel
implementation has a fairly severe impact on network component
latency and clock speed [3]. Discarding networks are generally
immune to deadlock; livelock can avoided by using an appropriate
backoff strategy.

6. CONCLUSION

To date there has been very little work on end-to-end fault-
tolerant messaging protocols in the context of parallel machines,
and with good reason: existing systems are small enough that it is
possible to implement non-discarding networks. As shown in
Section 4.5, this is clearly the better approach when performance
is the only concern. When the number of nodes is increased by
one or two orders of magnitude, however, it becomes increasingly
difficult to engineer a reliable network, and so the focus must shift
to the development of reliable end-to-end network protocols.

In this paper we have shown that it is possible to implement a
lightweight messaging protocol that guarantees message delivery
and idempotence, can tolerate arbitrary dynamic faults (so long as
at least one routing path exists between every pair of nodes), and
does not require the expected O(N?) resources for N nodes. The
key element of the protocol is the third confirm packet which
informs the receiver that no more duplicate messages will be sent.

While the idempotent messaging protocol is more demanding on
the network — the number of packets is more than tripled, count-
ing retransmissions — it also allows for larger flits, faster clocks,
and more flexible routing. We have seen that it is reasonable to
expect the performance degradation to be less than 2x in an actual
implementation on a high-bandwidth network. On some systems
it may be possible to further improve performance by piggyback-
ing the response to remote memory references in the acknowl-
edgement packet. Another potential performance enhancement is
to implement a hybrid network that is able to buffer packets dur-
ing congestion. Note that the combination of packet buffering and
multiple routing paths implies an out-of-order network, so the
protocol would need to be modified as described in Section 2.3.

We note that our discussion of retransmission backoff strategies is
preliminary at best; the space of possible approaches is enormous
and a more comprehensive evaluation was beyond the scope of
this paper. We chose to focus on simple functions of the trans-
mission attempt counter n. Using a lookup table, one could in fact
implement arbitrary functions of n. More generally, the backoff
could depend on other factors as well such as estimated measures
of congestion around the source node, the destination node, or in
the network as a whole.
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