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ABSTRACT
We propose a deterministic fault-tolerant and deadlock-free rout-
ing protocol in 2-dimensional (2-D) meshes based on dimension-
order routing and the recently proposed odd-even turn model. The
proposed protocol, called extended X-Y routing, does not use any
virtual channels by prohibiting certain locations of faults and des-
tinations. Faults are contained in a set of disjointed rectangular
regions called faulty blocks. The number of faults to be tolerated
is unbounded as long as nodes outside faulty blocks are connected
in the mesh network. The extended X-Y routing can also be used
under a special convex fault region called orthogonal faulty block,
which can be derived from a given faulty block by activating some
nonfaulty nodes in the block. Extensions to partial adaptive routing,
traffic- and adaptivity-balanced using virtual networks, and routing
without constraints using virtual channels and virtual networks are
also discussed.
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1. INTRODUCTION
The direct network is a popular means to construct multicom-

puters, where a set of channels are used to connect each processor
(node) to a limited neighbors. In a multicomputer system, rout-
ing algorithms provide mechanisms for communication between
nodes. The performance of such a system depends heavily on the
efficiency of routing algorithms. Routing algorithms are either de-
terministic or adaptive. Deterministic routing uses only one path to
route packets from a source to a destination, while adaptive routing
makes use of many different routes. Most commercial systems use
deterministic routing because of its deadlock freedom and ease of
implementation.

Dimension-order routing is a commonly used deterministic rout-
ing algorithm in mesh-connected multicomputers which include
meshes, tori (meshes with wraparound connections), and hyper-
cubes. In dimension-order routing, a routing packet is routed in one
dimension at a time (the offset between the source and destination
nodes is reduced to zero along that dimension). X-Y routing is an
example of dimension-order routing used in 2-dimensional (2-D)
meshes and tori. In X-Y routing, the packet is routed first in the x
dimension and then in the y dimension. Unfortunately, X-Y routing
is not fault-tolerant and it cannot tolerate even a single fault.

Designing a deterministic routing protocol that is both fault-tole-
rant and deadlock-free poses a major challenge. The wormhole
switching technique used in the latest generation of multicomput-
ers is subject to deadlock more than packet switching. In addition,
wormhole switching tends to support routing with less fault toler-
ance. Wormhole routing divides a message into packets and pack-
ets into flits. It then routes flits through the network in a pipeline
fashion. When the header flits reach a node that has no output chan-
nel available, all of the flits are blocked where they are (in place).
A deadlock occurs when some packets from different messages
cannot advance toward their destinations because the channels re-
quested by them are not available. All the packets involved in a
deadlocked configuration are blocked forever. Deadlock avoidance
is a commonly used approach in which channels are granted to a
packet in such a way that a request never leads to a deadlock. To
achieve fault tolerance, faults are normally contained in a set of dis-
jointed rectangular regions called faulty blocks. Each faulty block
may include some non-faulty nodes as shown in Figure 1 (a). The
convexity of faulty blocks facilitates a simple design of deadlock-
free routing. To design a deadlock-free routing, virtual channels
[6] and virtual networks [13] are usually used to provide a certain
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degree of routing freedom to route around a faulty block.
In this paper, we propose a deterministic fault-tolerant and dead-

lock-free routing protocol in 2-D meshes based on X-Y routing
and the recently proposed odd-even turn model [5], an extension
to Glass and Ni’s turn model [11] where certain turns are prohib-
ited to avoid deadlock. The proposed protocol, called extended X-Y
routing, does not use any virtual channels by prohibiting certain
locations of faults and destinations. The main purpose of posing
such restrictions is to better present our idea without going into
messy details of boundary situations. The number of faults to be
tolerated is unbounded as long as nodes outside faulty blocks are
connected in the resultant mesh network. Each faulty block is sur-
rounded by a boundary ring consisting of four boundary lines, one
for each direction. However, the boundary line defined at the east
(and west) side of each faulty block consists of two lines: one in
an even column (column with an even label) and one in an odd
column (see Figure 1). The faulty block is so defined that nodes
on the boundary lines of a faulty block (simply called boundary
nodes) do not intersect with any other faulty block. In the absence
of faults, the extended X-Y routing works like a regular X-Y rout-
ing which routes packets along the x dimension first followed by
the y dimension. When packets reach a boundary node of a faulty
block, the boundary ring is used to route packets around the block.
Two boundary lines at the east and west of a faulty block (except
the one at the edge of the mesh) are used to avoid certain turns as
specified in the odd-even turn model.

The extended X-Y routing can also be applied to a special con-
vex fault region called an orthogonal faulty block [19], which can
be derived from a given faulty block after activating some nonfaulty
nodes in the block. The localized algorithm [8, 20], a special type
of decentralized algorithms, is used to construct faulty blocks, or-
thogonal faulty blocks, and boundary lines. Extensions to partial
adaptive routing, traffic- and adaptivity-balanced using virtual net-
works, and routing without constraints using virtual channels and
virtual networks are also discussed.

The following are assumptions used in this paper: (1) Only node
faults are considered and they are contained in a set of disjointed
faulty blocks defined in the paper. (2) The fault model is static, that
is, no new faults occur during a routing process. (3) Both source
and destination nodes are outside any faulty block. In addition, the
destination is not a boundary node of any faulty block. (4) Faults
do not appear at four edges of a mesh. In addition, no fault ap-
pears at two columns that are adjacent to the west and east edge of
the mesh. (5) A connected 2-D mesh is used with four directions:
North (positive x), South (negative x), East (positive y), West (neg-
ative y). (Unlike the convention the north-south axe is used here as
the x axe to match the notation used in the odd-even turn model.)

Note that almost all the above assumptions can be relaxed. Link
faults can be treated as node faults by considering its end nodes
faulty. Since the faulty block can be calculated quickly in a few
rounds, the proposed approach can be extended to a dynamic fault
model with a careful design. Condition (3) can be removed by us-
ing two virtual channels as will be shown in the extension of the ap-
proach. Condition (4) is used to avoid handling complex boundary
situation. If condition (4) fails, either nodes of the corresponding
edge(s) are disabled and removed from the mesh or virtual chan-
nels are introduced (as used in many existing approaches) to route

(a) (b) (c)

Figure 1: Three examples of faulty blocks where black nodes
are faulty nodes and gray nodes are nonfaulty nodes.

around faulty blocks that are at the edge of the mesh.
The rest of the paper is organized as follows: Section 2 discusses

related work. Section 3 provides preliminaries where the odd-even
turn model is reviewed, the general methodology of localized al-
gorithms is discussed, and an extended faulty block model is intro-
duced. Section 4 proposes the extended X-Y routing, which is a
fault-tolerant and deadlock-free routing protocol without using vir-
tual channels. Section 5 extends the protocol to a 2-D mesh with
orthogonal faulty blocks. A localized algorithm for the formation
of orthogonal faulty blocks is also included. Section 6 lists ideas
for other possible extensions. Section 7 concludes the paper and
discusses possible future work.

2. RELATED WORK
Virtual channels [6] were first introduced to prevent deadlock

and offer adaptivity in routing, not for fault tolerance. Duato [7]
provided a general deadlock-free routing approach by introducing
the notion of escape channels. In this general approach, virtual
channels are divided into two groups: one for nonminimal adaptive
routing and the other (called escape channels) for minimal, deter-
ministic routing. Park and Agrawal [14] discussed a similar design
methodology for deadlock-free routing but routing functions are
based on the history of channels in addition to destination informa-
tion. Fleury and Fraigniand [9] gave a comprehensive survey on
different deadlock-free routing protocols.

Linder and Harden [13] were the first to use virtual channels and
virtual networks to achieve fault tolerance. Their method requires
O(2n) virtual channels for a fully adaptive fault-tolerant routing in
an n-D mesh. Using virtual channels has some disadvantages, for
example, routers based on virtual channels require more gates and
time compared with those not based on virtual channels. To reduce
the number of virtual channels, Chien and Kim [4] introduced the
planar adaptive routing which provides partial adaptivity in an n-D
mesh by first dividing the routing process into a sequence of phases
and then forwarding packets in two dimensions within each phase.

In recent years many deterministic fault-tolerant routing algo-
rithms in 2-D meshes and tori have been proposed. In Boppana and
Chalasani’s approach [1], fault regions are surrounded by either
fault rings or fault chains (at boundaries of a mesh). When a packet
encounters a fault region, a fault ring or chain is used to route the
packet around the region. Deadlock is avoided by using four virtual
channels per physical channel for dimension-order routing. Many
extensions based on Boppana and Chalasani’s approach have been
proposed [2, 3, 16, 17, 21]. These extensions try to reduce either
the number of nonfaulty nodes in a faulty block by considering dif-
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Figure 2: Permissible EN, NW, ES, and SW turns.

ferent types of fault regions or the number of virtual channels. So
far the best results can reduce the number of virtual channels to two
or three depending on the type and distance between faulty blocks
used. To our knowledge, there is no deadlock-free dimension-order
routing that can tolerate unlimited number of faults without using
virtual channels.

Glass and Ni’s fault-tolerant routing [10] in meshes without us-
ing virtual channels is based on the turn model [11]. However, its
fault tolerance capability is limited to n� 1 in an n-D mesh, i.e.,
one fault in a 2-D mesh. Fault-tolerant routing without using vir-
tual channels exists for non-dimension-order routing. For example,
fault-tolerant path-based routing [12] is based on finding a Hamil-
tonian path or pseudo Hamiltonian path in a faulty mesh or torus.
However, it is nonminimal, and unlike the faulty block model, path
information is difficult to maintain in a localized way. Note that
routing that allows backtracking can potentially tolerate unlimited
number of faults such as the one proposed by Suh et al [15]. In
such an approach routing history is coded in the header to navigate
the routing process.

3. PRELIMINARIES
In this section, we first review the mesh topology and Chiu’s odd-

even turn model which is an extension to Glass and Ni’s turn model.
We then discuss the general methodology of localized algorithms.
Finally, we introduce an extended faulty block model.

3.1 2-D meshes
A 2-dimensional (2-D) mesh with n2 nodes has an interior node

degree of 4. Each node u has an address u: (ux;uy), where ux;uy 2

f0;1;2; :::;n� 1g. Two nodes u: (ux;uy) and v: (vx;vy) are con-
nected if their addresses differ in one and only one dimension, say
x, moreover, jux�vxj= 1. Each node in a 2-D mesh has four neigh-
bors, one in each of four directions: east, south, west, and north.

3.2 Odd-even turn model
Chiu [5] proposed an odd-even turn model, an extension to Glass

and Ni’s turn model [11]. In general, deadlock avoidance tries to
avoid the formation of a cycle, which is a necessary condition for
deadlock. A cycle in a mesh consists of several turns. For exam-
ples, SW (south-west), WN, NE, and ES turns are essential in a
clockwise cycle. The X-Y routing is made deadlock-free by pro-
hibiting a turn from the y dimension to the x dimension. Specifi-
cally, four types of turns are disallowed: two in a clockwise cycle
and two in a counterclockwise cycle. The basic concept behind the
turn model is to prohibit a minimum number of turns, and hence,
increase the routing adaptivity. In general, only one turn is prohib-

ited in each cycle. For example, in a positive-first turn model two
types of turns are disallowed (one for each cycle), that is, the turns
from the negative to positive directions. The odd-even turn model
restricts the locations where some of the turns can occur so that an
EN (east-north) turn and an NW turn are not taken at nodes in the
same column, and neither are an ES turn and a SW turn. Specifi-
cally, the odd-even turn model tries to prevent the formation of the
rightmost column segment of a cycle. Chiu gives two rules for turn
[5]:

Rule 1: Any packet is not allowed to take an EN turn at any node
located in an even column, and it is not allowed to take an NW turn
at any node located in an odd column.

Rule 2: Any packet is not allowed to take an ES turn at any node
located in an even column, and it is not allowed to take a SW turn
at any node located in an odd column.

Figure 2 shows these two rules on the EN, NW, ES, and SW
turns. These four turns are called sensitive turns. Turns without
restriction are called insensitive turns. A small triangle is placed
at each sensitive turn that is permissible (as shown in Figure 2).
Forbidden turns are represented as ones with dashed lines. A turn
in an even (odd) column is represented by E (O). Basically in odd-
even turn model, once east-bound starts, no more west-bound is
allowed in the routing process. Again, four directions are defined
as: East (+y), South (�x), West (�y), and North (+x).

3.3 Localized algorithms
In a localized algorithm [8, 20], which is a special type of decen-

tralized algorithms, each processor (process) interacts with others
in a restricted vicinity, but nevertheless collectively achieves a de-
sired global objective. This type of algorithms are usefully in a sys-
tem with a set of independent, autonomous processors (processes).
In general, each processor (process) performs exceedingly simple
tasks, such as maintaining and propagating information “markers”.
In this paper, we study several localized algorithms in which only
neighboring nodes exchange and update their markers.

3.4 Faulty blocks
We first introduce a special faulty block model. Faulty nodes in

a 2-D mesh are contained in a set of disjointed rectangular faulty
blocks. The regular faulty block model is defined as follows: All
nonfaulty nodes are safe initially. A nonfaulty node is changed to
unsafe if it has two unsafe or faulty neighbors in different dimen-
sions. In the extended faulty block model proposed in this paper,
each faulty block is surrounded by a boundary ring consisting of
four boundary lines, one for each direction. The boundary line at
the east (and west) side of the block consists of two lines. Two
faulty blocks are disjointed if the boundary ring of one faulty block
does not intersect with the other faulty block. The following gives
a formation of any faulty block by first classifying nonfaulty nodes
into unsafe and safe.

Definition 1: All nonfaulty nodes are safe initially. A nonfaulty
node is changed to unsafe if

1. it has two unsafe or faulty neighbors that are not all in the x
dimension; or
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Safe/unsafe status:
1. all nonfaulty nodes are initialized to safe;
2. repeat
3. doall
4. (1) nonfaulty node u exchanges its status with its neighbors.

In addition, the status of its east (west) neighbor is
passed to its west (east) neighbor.

5. (2) change u’s status to unsafe if
6. (a) it has two unsafe or faulty neighbors that are not all

in the x dimension, or
7. (b) it has an unsafe or faulty neighbor along the x

dimension and an unsafe or faulty 2-hop neighbor
along the y dimension.

8. odall
9. until there is no status change

Figure 3: A localized algorithm for determining safe/unsafe
status.

2. it has an unsafe or faulty neighbor in the x dimension and an
unsafe or faulty 2-hop neighbor (neighbor’s neighbor) in the
y dimension.

An extended faulty block consists of connected unsafe and faulty
nodes. Note that although both unsafe and faulty nodes are in-
cluded in faulty blocks, they are treated differently as will be seem
later in the orthogonal faulty block model where certain unsafe
nodes can be activated by removing from the blocks. The difference
between the extended faulty block definition (Definition 1) and the
conventional one lies in the different treatments of adjacent nodes
in different dimensions. An extended faulty block and its boundary
nodes are so defined to facilitate fault-tolerant routing based on the
odd-even turn model to be discussed in the next section. It can be
easily shown that faulty blocks in 2-D meshes are disjointed rect-
angles. Let u: (ux;uy) and v: (vx;vy) be two nodes in a 2-D mesh,
d(u;v) = jux � vxj+ juy � uyj denotes the distance between u and
v. The distance between two faulty blocks A and B is defined as
d(A;B) = minu2A;v2Bfd(u;v)g. It can be easily shown that the dis-
tance between any two faulty blocks, A and B, is at least 3 along the
y dimension or is at least 2 along the x dimension. Figure 1 shows
three faulty blocks with boundary rings shown in boldface. In the
subsequent discussion, a faulty block refers to an extended faulty
block unless otherwise specified.

In the localized algorithm for safe/unsafe status (see Figure 3),
each nonfaulty node is marked either safe or unsafe. Neighbors
exchange and update their markers. Eventually, connected unsafe
and faulty nodes form a faulty block (which is a global objective).
To facilitate the decision process of node status, each node sends its
status to its 2-hop neighbors along the y dimension. It is assumed
that each node knows the status of its neighbors.

Theorem 1: Boundary nodes of a faulty block do not intersect
with any other faulty block.

Proof: Assume that node u is a boundary node of a faulty block
A, i.e., it is either 1-hop neighbor along dimension x or 1-hop or
2-hop neighbor along dimension y. Assume node u also belongs to
faulty block B. Based on the faulty block definition, faulty blocks
A and B should be combined to form a single block. This brings a

Extended X-Y routing:

1. /* the packet is sent to an even column */

(a) If the source is in an odd column and ∆x is non-zero, then the
packet is sent to its west neighbor in an even column.

2. /* phase 1: reduce ∆x */

(a) (Normal mode) reduce ∆x to zero by sending the packet north
(or south) (with no 180� turn).

(b) (Abnormal mode) when a north-bound (south-bound) packet
reaches a boundary node of a faulty block, it is routed around
the block clockwise (counter-clockwise) by following the
boundary ring of the faulty block as shown in Figure 4 (a)
(Figure 4 (b)). The packet takes the first even column turn
whenever possible and step (a) is followed.

3. /* phase 2: reduce ∆y */

(a) Once ∆x is reduced to zero, an NW or NE turn is performed
for the north-bound packet (see Figure 4 (a)) and a SW or SE
turn is performed for a south-bound packet (see Figure 4 (b)).
The selection of a turn depends on the relative location of the
destination to the current node.

(b) (Normal mode) reduce ∆y to zero by sending the packet east
(west) (with no 180� turn).

(c) (Abnormal mode) when a east-bound (west-bound) packet
reaches a boundary node of a faulty block, it is routed around
the block, clockwise or counterwise, along odd columns of the
boundary ring as shown in Figure 4 (c) (even columns of the
boundary ring as shown in Figure 4 (d)). Routing around the
block is completed when ∆x is again reduced to zero and step
(b) is followed.

Figure 5: Extended X-Y routing.

contradiction.

Note that although boundary nodes of a faulty block do not inter-
sect with any other faulty block, boundary nodes of different faulty
blocks may overlap, i.e., a node can be a boundary node of more
than one faulty block. The complexity of the safe/unsafe status pro-
cedure, in terms of the number of rounds needed, is the maximum
diameter of faulty blocks in the mesh: maxfdiam(A)g.

4. EXTENDED X-Y ROUTING
We propose a deterministic routing process, called extended X-

Y routing, which consists of two phases, similar to a regular X-Y
routing. (That is why it is still belong to dimension-order routing
although the other dimension is used within each phase to bypass
faulty blocks encountered.) In phase 1, the offset along the x di-
mension is reduced to zero, and in phase 2, the offset along the y
dimension is reduced to zero. Assume source and destination nodes
are both safe. Let s : (sx;sy) and d : (dx;dy) be the source and desti-
nation nodes, respectively. ∆x = jdx�sxj and ∆y = jdy�syj are off-
sets along dimension x and dimension y, respectively. The extended
X-Y routing provides a special implementation of the requirement
posed in the even-odd model and, at the same time, supports fault-
tolerant routing.

The extended X-Y routing (shown in Figure 5) follows the reg-
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ular X-Y routing (and the packet is in a “normal” mode) until the
packet reaches a boundary node of a faulty block. At which point,
the packet is routed around the block (and the packet is in an “ab-
normal” mode) clockwise or counterclockwise based on the fol-
lowing rules: When a routing packet routes around a faulty block
following the boundary ring, the corresponding block is called the
routing block. During phase 1 the packet is routed around the rout-
ing block through the west side of the block. Even columns are
used to route the packet along the x dimension (column). In phase
2, to route around the routing block, odd columns (even columns)
are used to perform routing along the y dimension when the packet
is east-bound (west-bound) (see Figure 4 (c) and (d)). The packet is
routed around the routing block either clockwise or counterclock-
wise in phase 2 (see Figures 4 (c) and (d)). Note that during the
normal mode of routing the packet along the x or y dimension, no
180� turn is allowed. For example, the positive x direction cannot
be changed to the negative x direction.

A special case occurs when the destination is at the east side of
the routing block. In this case, when phase 1 completes, the routing
packet is still at the west side of the routing block as shown in
Figure 6. The even (marked as E) boundary column of the routing
block is switched to the odd (marked as O) boundary column (two
subcases are shown in Figures 6 (a) and (b)), and then, the packet
is routed around the block either clockwise or counterclockwise.
Figure 7 shows three routing examples (si;di), with i 2 f1;2;3g, in
a 10 � 10 mesh (wraparound connections are not shown) with four
faulty blocks F1, F2, F3, and F4. Note that when the routing packet
reaches a northwest (NW) or southwest (SW) corner of a routing
block in phase 1, the packet goes straight, north-bound or south-
bound, without further routing around the block (see Figures 4 (a)
and (b)).

A fault-tolerant routing process is livelock-free if it can deliver
packets from the source to destination, regardless of the number
and location of faults. The following result shows that the extended
X-Y routing is both deadlock-free and livelock-free in a 2-D mesh
where faults are contained in a set of disjointed faulty blocks.

Theorem 2: The extended X-Y routing is deadlock-free and live-
lock-free.

Proof: In the routing process, all sensitive turns are permissible,
based on the results from the odd-even turn model [5], the extended
X-Y routing is deadlock-free. To show the livelock-free property,
we only need to show that ∆x (∆y) is eventually reduced to zero in

phase 1

phase 2

OEE O

d d

(a) (b)
s s

Figure 6: Two subcases of special routing.

phase 1 (phase 2). In phase 1, ∆x is always reduced by one at each
step (with no 180� turn), except when the packet is routed around
a faulty block by going west. There are two cases of west-bound
hops, one case is in the first hop for the packet to reach an even col-
umn and the other case occurs when the packet is routed around a
faulty block. Since the size of each faulty block is limited, the num-
ber of west-bound hops is a finite number. In addition, although the
packet may have to route around several faulty blocks (or several
abnormal modes), ∆x is reduced by at least one in a normal mode
between every two adjacent abnormal modes. Therefore, ∆x is re-
duced to zero in a finite number of steps in phase 1. Similarly, ∆y is
also reduced by one at each step in phase 2, except when the packet
is routed around a faulty block. Since the size of each faulty block
is limited, using the same argument used in phase 1, ∆y is eventu-
ally reduced to zero in a finite number of steps in phase 2. Note that
when a packet is routed around a faulty block in phase 2, ∆x may
temporarily become non-zero, based on the routing process, ∆x is
reduced to zero again when the process of routing around the faulty
block is completed.

Note that the destination is not a boundary node of any faulty
block. This is to prevent the following case: If the destination is
at the east side of a faulty block and it is on an even boundary line
which is closer to the block than the odd boundary line, then the
rightmost column segment of a cycle may be constructed when a
east-bound message routes around the block as shown in Figure 4
(c). However, this restriction can be removed by introducing two
virtual channels as will be shown in Section 6.

5. ORTHOGONAL FAULTY BLOCKS
A faulty block may include many nonfaulty nodes labeled as un-

safe as shown in Figure 1. Many unsafe nodes can be activated and
removed from a faulty block while still keeping its convexity. The
following definition provides such a special convex fault region.
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Definition 2 [19]: A region is orthogonal convex if and only if
the following condition holds: For any horizontal or vertical line, if
two nodes on the line are inside the region, then all the nodes on the
line that are between these two nodes are also inside the region.

A fault region that is orthogonal convex is called an orthogo-
nal faulty block. The proposed extended X-Y routing can be easily
extended to 2-D meshes with orthogonal faulty blocks. When a
routing block is orthogonal, care should be taken in phase 2 when
a routing packet goes around the block. The selection of either the
clockwise or counterclockwise direction to route around a fault re-
gion becomes important (and is no longer arbitrary). The formation
of the rightmost column of a cycle may occur as shown in Figure 11
(a) when a east-bound packet goes around the block clockwise. To
avoid this situation, the boundary lines around east and west sides
of an orthogonal faulty block are associated with directional in-
formation as shown in Figure 8 (a). Basically, boundary nodes at
the west (east) side of an orthogonal faulty block should “point
toward” east (west). The formation of directional information to-
gether with boundary nodes of an orthogonal faulty block using
a localized algorithm is shown in [18]. It is assumed that direc-
tional information exists at boundary nodes of orthogonal convex
regions. Let minx and maxx (miny and maxy) be the minimum and
maximum coordinates of the original faulty block of an orthogo-
nal faulty block A along dimension x (dimension y), respectively.
The rectangle spanning from nodes (minx;miny) and (maxx;maxy)

is called a container for block A. One additional assumption is
added: The source is outside any orthogonal faulty block and the
destination is outside the container of any orthogonal faulty block.

Once directed boundary lines are defined, the extended X-Y rout-
ing can be directly applied. The only change occurs in phase 2, the
routing packet has to follow the directed boundary lines when route
around a routing block. In phase 1, the packet still goes west-bound
around a routing block with one minor, but subtle, change: When

the packet reaches a northeast (NE) or southeast (SE) corner (see
Figure 8 (a)) of a routing block, the packet should be sent west im-
mediately. Figures 8 (b) and (c) show two routing examples, where
routing blocks are orthogonal faulty blocks and s and d represent
source and destination, respectively. In phase 1, routing around a
routing block completes when either the packet reaches the left-
most boundary line or ∆x is reduced to zero. In the former case
(as shown in Figure 8 (c)), the packet is then routed along dimen-
sion x until ∆x is reduced to zero. In phase 2, routing around a
routing block completes when either the packet reaches the right-
most boundary line or ∆x is reduced to zero. In the former case,
the packet is routed along dimension x until ∆x is reduced to zero,
and then ∆y is reduced by sending the packet along dimension y.
In the latter case, the packet is routed directly along dimension y to
reduce ∆y (as shown in the example (s1;d1) of Figure 8 (b)).

Theorem 3: Using the orthogonal faulty block model, the modi-
fied extended X-Y routing is still deadlock-free and live-lock-free.

Proof (Sketch): In phase 1, assume that the packet is north-
bound (the south-bound case can be treated in a similar way), rout-
ing around a routing block involves a sequence of the following
turns: NW, (WS, SW)�, (WN, NW)�, WN, where (WS, SW)� rep-
resents a zero or more repetitions of WS, SW turns (as shown in
the example (s2;d2) of Figure 8 (b)). All sensitive turns, NW and
SW, occur in even columns and they are permissible. In the tran-
sition between phase 1 and phase 2, either an NW or NE is per-
formed in an even column. In phase 2, assume that the packet is
east-bound (the west-bound case can be treated in a similar way),
routing around a routing block (if any) involves a sequence of the
following turns if the packet is routed in the counter-clockwise di-
rection: ES, (SE, ES)�, SE, (EN, NE)�, EN. If the packet is routed
in the clockwise direction, the following sequence of turns is used:
EN, (NE, EN)�, NE, (ES, SE)�, ES. All sensitive turns are per-
formed in odd columns and they are permissible. Once ∆x is re-
duced to zero, either a SE or NE turn is performed in an odd column
to reduce ∆y. The fact that the destination being outside a container
ensures that the packet is still east-bound after phase 2. Hence, the
modified extended X-Y routing is still deadlock-free and livelock-
free.

In the following, we propose a simple decentralized formation of
orthogonal faulty blocks from a given set of faulty blocks. Given
a faulty block, the corresponding orthogonal faulty block(s) can be
derived by assigning enabled/disabled status to unsafe nodes in the
faulty block. Basically, nonfaulty nodes are associated with a set
of status: safe/unsafe and enabled/disabled. Node status is used not
only for the formation of orthogonal faulty blocks but also for the
eligibility check for the source and destination nodes.

Definition 3 [19]: All safe nodes are marked enabled. An unsafe
node is initially marked disabled. It is changed to the enabled status
if it has two or more enabled neighbors.

An orthogonal faulty block consists of connected disabled and
faulty nodes. Wu [19] showed that a fault region derived from the
enabled/disabled process is an orthogonal convex polygon. In ad-
dition, each region is the smallest orthogonal convex polygon that
covers all the faulty nodes within the region.
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Figure 8: Routing along orthogonal faulty blocks.
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Figure 9: The orthogonal faulty blocks of three faulty blocks in
Figure 1.

Figure 9 shows the corresponding orthogonal faulty blocks for
three faulty blocks in Figure 1. The boundary nodes of an orthog-
onal faulty block are defined in the same way as in a faulty block.
Two boundary lines are at the east and west side of the block (only
one line is shown in Figure 9). White nodes are unsafe but enabled
nodes. Gray nodes are unsafe and disabled nodes. For the faulty
block in Figure 1 (a), the corresponding orthogonal faulty block is
substantially reduced. The two faulty blocks in Figure 1 (b) are
partitioned into three orthogonal faulty blocks as shown in Figure 9
(b).

However, the two faulty blocks in Figure 1 (c) are partitioned
into three orthogonal faulty blocks but two of them do not meet the
boundary node condition (Theorem 1). The problem in the exam-
ple of Figure 9 (c) is that unsafe nodes in between two faulty nodes
(at two adjacent rows) along the y dimension should not be enabled
to ensure that boundary nodes of an orthogonal faulty block do not
intersect with another block. We will explicitly mark these nodes
disabled in the following extended enabled/disabled status defini-
tion.

Definition 4: All safe nodes are marked enabled. Unsafe nodes
can be remarked in the following sequence:

1. An unsafe node is remarked semi-faulty if it has a faulty
south or north neighbor.

2. An unsafe or semi-faulty node is remarked disabled if the sta-
tus of its east and west neighbors belong to one of the fol-
lowing three cases: faulty and semi-faulty, semi-faulty and
faulty, or faulty and faulty, respectively.

3. An unsafe or semi-faulty is remarked enabled if it has two or
more enabled neighbors.

Extended enabled/disabled status:
1. all safe nodes are enabled;
2. unsafe nodes with faulty south or north neighbors

are remarked semi-faulty;
3. unsafe or semi-faulty nodes are remarked disabled

if both east and west neighbors are faulty or semi-
faulty (with at least one being faulty);

4. repeat
5. doall
6. (1) unsafe or semi-faulty node u exchanges its

status with that of its neighbors.
7. (2) remark u’s status to enabled if it has two

or more enabled neighbors.
8. odall
9. until there is no status change

Figure 10: A localized algorithm for determining extended en-
abled/disabled status.

Unlike Definition 3, an unsafe node in a faulty block may not be
assigned an enabled/disabled status in Definition 4. A semi-faulty
node resembles an unsafe node and it is so labeled just to determine
disabled nodes. To apply the extended X-Y routing in meshes with
orthogonal faulty blocks, the source should be an enabled node and
the destination should be a safe node that is not a boundary node of
an orthogonal faulty block.

The connected nodes with status other than safe or enabled form
an extended orthogonal faulty block. Since an extended orthogonal
faulty block is generated from a given faulty block, the complex-
ity of extended enabled/disabled status procedure is still the max-
imum diameter of faulty blocks. In the subsequence discussion,
an extended orthogonal faulty block is simply called an orthogo-
nal faulty block. Figure 11 shows the result of applying extended
enabled/dis-abled process to the examples in Figure 1. The nodes
with a cross are disabled nodes. Semi-faulty nodes are not explic-
itly marked since they can be easily identified. In the localized al-
gorithm for extended enabled/disabled status (see Figure 10), three
sets of markers are used: faulty and semi-faulty, safe and unsafe,
and enabled and disabled.

Proposition 1: A fault region derived from the extended enabled-
/disabled process is an orthogonal convex polygon.

Proposition 2: Any boundary node of an orthogonal faulty block
derived from the extended enabled/disabled process does not be-
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Figure 11: The extended orthogonal faulty blocks of three
faulty blocks in Figure 1.

long to any other orthogonal convex polygon.

The proofs of Propositions 1 and 2 follow directly the ones used
in [19] for properties of regular orthogonal faulty blocks. Note that
the extended orthogonal faulty block is no longer the smallest con-
vex region covering all faults in the region. However, the marking
process can be enhanced to reduce its size. For example, step 2 in
Definition 4 can be changed to the following: an unsafe or semi-
faulty node is marked disabled if its east neighbor is faulty and its
west neighbor is either faulty or semi-faulty. With this change, the
status of two disabled nodes in Figure 11 (a) will be changed: one
to unsafe status and the other (at the bottom row) to the enabled
status. In Figure 11 (c), the disabled node at the bottom row is
enabled.

To see the difference between regular faulty blocks (FB) (or-
thogonal faulty blocks (OFB) (Definition 3)) and extended faulty
blocks (Definition 1) (extended OFB (Definition 4)) in terms of
the amount of nonfaulty nodes included in these blocks, we con-
ducted a simulation study on a 100�100 mesh where a number of
faults are randomly generated. Figure 12 (a) shows the numbers
of nodes covered in FBs and extended FBs for given number of
faults. Figure 12 (b) shows the numbers of nodes covered in OFBs
and extended OFBs for given number of faults. It is clear from the
results that both extended faulty blocks and extended orthogonal
faulty blocks include more nonfaulty nodes (that are enabled) than
faulty blocks and orthogonal faulty blocks, respectively. However,
the differences are not significant especially when the number of
faults are small.

6. EXTENSIONS
In this section, we provide some ideas for extensions, which

include partial adaptive routing, traffic- and adaptivity-bal-anced
routing using virtual networks, and removing constraints using vir-
tual channels and networks.

6.1 Partial adaptive routing
The extended X-Y routing is deterministic, that is, there is only

one routing path (except when a packet routes around a routing
block). In the following, we consider a restricted zig-zag routing
based on the odd-even turn model.

Routing can be divided into EW-routing (from east to west) and
WE-routing (from west to east). The case for the offset along the
y dimension (∆y) being zero can be assigned to either group. WE-
routing follows the extended X-Y routing which consists of phase 1
and phase 2 as discussed in the previous section (see Figures 14 (a)
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Figure 12: The numbers of nodes covered in (a) FBs and ex-
tended FBs and (b) OFBs and extended OFBs.

and (b)). EW-routing follows the restricted zig-zag routing which
consists of a sequence of alternating phase 1 and phase 2 (see Fig-
ures 14 (c) and (d)). WE-routing is still deterministic while EW-
routing is partially adaptive.

Let ∆1
x and ∆1

y (∆2
x and ∆2

y) be the offsets along dimensions x
and y respectively in phase 1 (phase 2). The requirement at each
phase is the following: In phase 1, ∆1

x is monotonically decreas-
ing, and in phase 2, ∆2

y is monotonically decreasing and ∆2
x remains

unchanged. It can be easily shown that as long as the above re-
quirement is met in each phase, the restricted zig-zag routing is
livelock-free. The deadlock freedom of the restricted zig-zag rout-
ing is obvious, since all turns in both phase 1 and phase 2 are per-
missible.

6.2 Traffic- and adaptivity-balanced routing
using virtual networks

The proposed routing protocol does not make use of resources
(channels) evenly. It is obvious that even columns are heavily used
in routing in the x dimension. To balance the channel usage, we
can use two versions of the routing protocol, one is based on Rules
1 and 2 which heavily uses even columns and the other one is dis-
cussed below which heavily uses odd columns. In the second ver-
sion of the extended odd-even turn model, still the rightmost col-
umn segment of a cycle is prevented. However, the rule of even and
odd is exchanged.

Rule 1
0

: Any packet is not allowed to take an EN turn at any
node located in an odd column, and it is not allowed to take an NW
turn at any node located in an even column.

Rule 2
0

: Any packet is not allowed to take an ES turn at any node
located in an odd column, and it is not allowed to take a SW turn
at any node located in an even column.

Figure 13 shows the permissible EN, NW, ES, and SW turns un-
der Rules 1

0

and 2
0

in phases 1 and 2. In the second version of
the extended odd-even turn model, odd columns are used to route
the packet in the x dimension (in phase 1). The role of even and
odd is also exchanged when route around faulty blocks in phase 2.
To support two versions of the extended odd-even turn model, two
virtual networks, VN1 and VN2, are used. VN1 is used to enforce
Rules 1 and 2 while VN2 is applied to implement Rules 1

0

and 2
0

.
Each virtual network consists of a set of virtual channels, assum-
ing that each physical channel may support several virtual channels
multiplexed across the physical channel. Figure 15 shows the no-
tions of virtual channels and virtual networks using a 2� 2 mesh
(Figure 15 (a)). Figure 15 (b) shows a 2�2 mesh with two virtual
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channels, VC1 and VC2, but still one network. Figure 15 (c) shows
a 2� 2 mesh with two virtual networks VN1 and V N2. VN1 (and
V N2) consists of virtual channels VC1’s (VC2’s) only.

A virtual network is selected whenever a packet is injected into
the network. Each packet stays in the virtual network until it reaches
the destination. It is possible to allow switching from VN1 to V N2

(see Figure 15 (c)) during the routing process to increase adaptivity
without causing deadlock. We adopt the following rule for a source
to select a virtual network: VN1 is used if the destination is in an
odd column; otherwise, VN2 is chosen.

Note that other versions of the extended odd-even turn model
can be derived either by preventing the leftmost column segment of
a cycle or by exchanging the role of column and row. Rules by
preventing the leftmost column segment of a cycle not only pro-
vides a traffic-balanced routing to complement Rules 1 and 2 but
also provides an adaptivity-balanced routing when it is used to-
gether with Rules 1 and 2. Under these new rules, WE-routing
should adopt the extended X-Y routing while EW-routing should
follow the restricted zig-zag routing. When two versions are used
together, they provide an adaptivity-balanced routing between EW-
routing and WE-routing.

6.3 Removing constraints using virtual chan-
nels and virtual networks

So far we focus on presenting the basic idea without going into
the messy details of boundary situations. These situations include
faulty nodes at edges (or adjacent to edges) of the 2-D mesh and
destinations are adjacent to a faulty block. Many existing approaches
can be applied to handle the former case where virtual channels are
used to route around faulty blocks at the edges of the mesh. Here
we focus on handling the latter case using two virtual channels or
virtual networks.

(a) (c)

a b

c d

c d

a b

c d

a b

VC1

VC2

VN1

VN2

(b)

a b

c d

VC1VC2

Figure 15: (a) A 2� 2 mesh, (b) a 2� 2 mesh with two virtual
channels VC1 and VC2, and (c) a 2� 2 mesh with two virtual
networks VN1 and V N2.

Note that condition (2) of the assumptions requires that the des-
tination not to be a boundary node of any faulty block. In fact,
the proposed algorithm works for all destinations that are boundary
nodes of faulty block, except ones at the east side of a faulty block.
Refer to Figure 4 (c) where an ES turn is made at an odd boundary
line. If the corresponding even boundary line is at the west of the
odd boundary line (i.e., closer to the faulty block) and the desti-
nation is at this even boundary line, it will force a SW turn at the
odd boundary line (which is not permissible) as the last hop. To
handle this situation, two virtual channels VC1 and VC2 are used
at those even boundary lines that are adjacent to faulty blocks. All
hops use VC1’s except the last hop which is a SW turn at the odd
boundary line. Two virtual networks provide even a simpler solu-
tion. This approach not only balances traffic but also increases the
scope of applicability, that is, the constraint that the destination is
not a boundary node a faulty block can be removed. Rules 1 and 2
are implemented using V N1 and it will take care of all destinations
in odd columns. In this case, no SW or NW turn is needed at the
east side of a faulty block. Rules 1

0

and 2
0

are implemented using
V N2 and it handles all destinations in even columns.

The virtual channel approach can also be applied to the orthog-
onal faulty block model. Recall the additional constraint on the
orthogonal faulty block model: The destination must be outside
the container of any orthogonal faulty block. That is, unsafe but
enabled nodes (i.e., nodes inside the container but outside the or-
thogonal faulty block) are used only as sources or intermediate
nodes to bypass traffic, but not destinations. Again, we use two
virtual channels to remove this restriction. In fact, unsafe but en-
abled nodes in a container [minx : maxx;miny : maxy] form up to
four connected components. The one contains node (minx;miny) is
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called SW section (see Figure 16), the one contains (minx;maxy) SE
section, the one contains (maxx;maxy) NE section, and the one con-
tains (maxx;miny) NW section. In fact, destinations at SW and NW
sections are allowed without causing any problem. The problem
occurs when route around the east side of a faulty block through
a sequence of ES and SE turns in odd columns. If the destination
is inside the SE section, a SW turn in an odd column cannot be
avoided (as shown in Figure 16 for a phase 2 routing). Similar situ-
ation occurs when route around the east side of the block through a
sequence of NS and SN turns in odd columns and the destination is
inside the NE section. The solution is again using two virtual chan-
nels: VC1’s are used throughout until a SW turn (NW turn) in an
odd column is made. In this case, the packet enters the SE section
(NE section) of the faulty block. In the remaining steps VC2’s are
used until reaching the destination. It is easy to show that the SE
or NE section is fault-free. Therefore, the remaining steps can be
completed without switching virtual channels.

7. CONCLUSIONS
In this paper, we have proposed a simple and efficient determin-

istic fault-tolerant and deadlock-free routing in 2-D meshes without
virtual channels. This approach is based on the popular X-Y rout-
ing and the recently proposed odd-even turn model. The novelty
of the approach is the use of two boundary lines at the east and
west of a faulty block. This gives just enough freedom to route
around a faulty block, and at the same time, to avoid certain turns
that may cause deadlock. The proposed approach can be applied
to 2-D meshes with any convex type of faulty blocks with simple
modification. We have shown the use of localized algorithms to
construct rectangular faulty blocks, a special type of convex faulty
blocks, and boundary lines. Our future work includes applying the
extended even-odd routing to high dimensional meshes. Another
possible extension is to apply the method to 2-D torus networks
with wraparound connections. In this case, there will be no bound-
ary fault constraint. However, nodes around each dimension form
a ring. Virtual channels (or virtual networks) need to be introduced
to remove potential cyclic dependency.
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