CS 181U
Applied Logic &
Automated Theorem Proving

Lecture 2

Human Reasoning,
Logic and Language,
Boolean Logic,
Object-Oriented Structural Recursion
Announcement: office hours
Still converging. Informal Poll.

Announcement: grutoring
no grutors.

Announcement: HW01
90% ready.
Will release today and email, or just check website. Due Tues Jan 31
Human Reasoning, Logic & Language
Each card has a number on one side, and a patch of color on the other.

Rule: if a card shows an even number on one face, then its opposite face is red.

Which card or cards must be turned over to test the rule?
Each card has an age on one side, and a beverage on the other.

Rule: if a person is under 21, then they must be drinking a non-alcoholic beverage.

Which card or cards must be turned over to test the rule?
The Wason Selection Task

Main takeaways:

90% of people get the abstract version (with numbers and colors) wrong.

Only 25% get it wrong with a real-world (age vs. drinking) example.

Ongoing debates about logical reasoning vs. enforcement of social contracts.
Conditionals

Remember $A \rightarrow B$?

“A implies B”

“If A, then B”

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Refresh your memory: fill this in
Biscuit Conditionals

Your friend says the following:

“If you are hungry, then there are biscuits on the table.”

Let $H = \text{you are hungry}$
Let $B = \text{there are biscuits on the table}$

$H \rightarrow B$

What does this mean if you interpret this statement in formal logic compared to everyday language?
Biscuit Conditionals

Main takeaways:

Natural language often does not match up with formal logic interpretations.

People have been arguing about this for over 50 years.
Meta Takeaways

Turing a formal logic statement into a natural language statement can help understanding.

Turing a formal logic statement into a natural language statement can hurt understanding.

Be careful about mixing natural language and logic!
Boolean Logic
Syntax, Well-Formed Formulas

Boolean logic formulas defined recursively:

Base Cases:

- \(T \) is a formula
- \(F \) is a formula
- \(v \) is a formula, where \(v \in V \), and \(V \) is a variable set

Recursive Cases:

If \(\alpha \) and \(\beta \) are well-formed formulas, then

- \(\neg \alpha \) is a formula
- \((\alpha \land \beta) \) is a formula
- \((\alpha \lor \beta) \) is a formula
- \((\alpha \rightarrow \beta) \) is a formula
- \((\alpha \leftrightarrow \beta) \) is a formula
WFF 'N Proof (1970)
Atoms and Literals

Atoms: the smallest building blocks of our logical universe

- T is an atom
- F is an atom
- v is an atom, for any $v \in V$
- nothing else is an atom

Literals: if a is any atom then

- a is a literal
- $\neg a$ is a literal

This is the only way to make literals. Said another way, a literal is either an atom or the negation of an atom.
Interpretations

Given a set of variables, \(V \), an interpretation for \(V \) is a total mapping, \(I : V \rightarrow \{ T, F \} \).

I.e. an interpretation \(I \) assigns each variable to be either true or false.

In python, we will use dictionaries for interpretations:

Example: \(\text{interp} = \{ \text{A : T, B : F, C : F} \} \)
Semantics for \neg, \land, \lor, \rightarrow, \leftrightarrow

For all possible interpretations of the variables in a formulas that uses a single connective, we need to define the resulting interpretation.

<table>
<thead>
<tr>
<th>A</th>
<th>$\neg A$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \land B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \lor B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \rightarrow B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>$A \leftrightarrow B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Satisfiability

We say that an interpretation I satisfies, or models, a logical formula ϕ if ϕ evaluates to T when replacing all variables in ϕ with their corresponding interpretation from I. We write:

$$I \models \phi$$

A formula ϕ is satisfiable if there exists an interpretation I such that $I \models \phi$.

Is $(A \lor \neg B) \land C$ satisfiable?

Is $(A \land B) \land (\neg A \lor \neg B)$ satisfiable?
Tautology, Validity

We say that a formula ϕ is a tautology, if it evaluates to T under all interpretations. We can also say that ϕ is a valid formula.

$((A \land B) \to C) \iff (A \to (B \to C))$.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>$A \land B$</th>
<th>$(A \land B) \to C$</th>
<th>$B \to C$</th>
<th>$A \to (B \to C)$</th>
<th>$((A \land B) \to C) \iff (A \to (B \to C))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
Unsatisfiable Formulas

A formula ϕ is said to be unsatisfiable if there does not exist any interpretation I such that $I \models \phi$.

Example: $(A \land B) \land (\neg A \lor \neg B)$
Adequate Sets of Connectives

A set of connectives is adequate if every truth function can be expressed using only those connectives.

\{\land, \lor, \neg\} is an adequate set of connectives.

\{\land, \neg\} is an adequate set of connectives.

\{\lor, \neg\} is an adequate set of connectives.
Less Common (but useful!) operators

Boolean logic formulas defined recursively:

Base Cases:

\(T \) is a formula

\(F \) is a formula

\(v \) is a formula, where \(v \in V \), and \(V \) is a variable set

Recursive Cases:

If \(\alpha \) and \(\beta \) are well-formed formulas, then

\(\neg \alpha \) is a formula

\((\alpha \land \beta) \) is a formula

\((\alpha \lor \beta) \) is a formula

\((\alpha \rightarrow \beta) \) is a formula

\((\alpha \leftrightarrow \beta) \) is a formula

\((\alpha \bar{\land} \beta) \) is a formula (NAND)

\((\alpha \bar{\lor} \beta) \) is a formula (NOR)

\((\alpha \oplus \beta) \) is a formula (XOR)
Semantics of $\bar{\land}$, $\bar{\lor}$, \oplus

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>$A\bar{\land}B$</th>
<th></th>
<th></th>
<th>$A\bar{\lor}B$</th>
<th></th>
<th></th>
<th>$A\oplus B$</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

NAND NOR XOR

Observe: $\bar{\land}$ is adequate to rewrite any Boolean formula:

\[
\neg A \equiv (A\bar{\land}A)
\]

\[
A \land B \equiv (A\bar{\land}B)\bar{\land}(A\bar{\land}B)
\]

This is enough

\[
A \lor B \equiv ?? ?? ?? ?? ??
\]

But, try this out for fun
Negation Normal Form

A formula is in negation normal form if all occurrences of \neg occur on atoms and the only other logical connectives are \land and \lor.

$A \land B$ is in NNF

$\neg C$ is in NNF

$(A \land B) \lor (X \rightarrow \neg Y)$ is in not NNF

$\neg (A \land B)$ is not in NNF

$\neg \neg A$ is not in NNF
Object-Oriented Structural Recursion in Python for HW