CS181u Applied Logic & Automated Reasoning

Lecture 7

Transition Systems Linear Temporal Logic

Next Few Weeks:

Linear Temporal Logic (LTL)

We will assign symbols for expressing temporal system requirements like *always* (G), *eventually* (F), *next* (X), *until* (U), and a few more. We will give a formal and unambiguous semantics to these symbols.

Transition Systems

We will learn a formal system of specifying transition systems (which we often depict as a transition diagram).

Concurrency Concepts

Safety, liveness, mutual exclusion, ...

Temporal Logic Software

Symbolic Model Verifier (NuSMV)

Next Few Weeks:

Linear Temporal Logic (LTL)

We will assign symbols for expressing temporal system requirements like *always* (G), *eventually* (F), *next* (X), *until* (U), and a few more. We will give a formal and unambiguous semantics to these symbols.

loda

Transition Systems

We will learn a formal system of specifying transition systems (which we often depict as a transition diagram).

Concurrency Concepts

Safety, liveness, mutual exclusion, ...

Temporal Logic Software

Symbolic Model Verifier (NuSMV)

Remember the big picture

Hacker-Proof Code Confirmed

Actual specifications are subtler than a trip to the grocery store. Programmers may want to write a program that notarizes and timestamps documents in the order in which they're received (a useful tool in, say, a patent office). In this case the specification would need to explain that the counter always increases (so that a document received later always has a higher number than a document received earlier) and that the program will never leak the key it uses to sign the documents.

Kathleen Fisher: Director of the Information Innovation Office at DARPA and former professor of Computer Science at Tufts.

Many important properties have a temporal component.

The light eventually turns green.

The door eventually opens.

Two processes are never in the critical section at the same time.

Always	Sometime After		
	Never	Next	Forever
Finitely often		Eventually	Impossible
	Until		Infinitely often
		Before	

Temporal Logic and Transition Systems

We will give meaning to temporal logic formulas with respect to transitions systems. So, let's talk about transition systems first. Transition system for $P_0||P_1$ from in-class activity.

Transition Systems

A transition system $\mathcal{M} = (S, I, \rightarrow, L)$ is a set of states Sand a set of initial states I, along with a transition relation \rightarrow and labelling function L.

The transition relation \rightarrow is equivalent to a set of directed graph edges, with the states as nodes.

For example, $((n_0, n_1, 0, F, F), (n_0, w_1, 0, F, T)) \in \rightarrow$

Alternatively, we can write $(n_0, n_1, 0, F, F) \rightarrow (n_0, w_1, 0, F, T).$

Important assumption: no dead states. Every state has an outgoing transition, even if only to itself.

Transition Systems, execution paths

A path in a transition system $\mathcal{M} = (S, I, \rightarrow, L)$ is an infinite sequence of states s_1, s_2, s_3, \ldots such that $s_1 \in I$ and for every $i \geq 1, s_i \rightarrow s_{i+1}$

Transition Systems, execution paths

A path in a transition system $\mathcal{M} = (S, I, \rightarrow, L)$ is an infinite sequence of states s_1, s_2, s_3, \ldots such that $s_1 \in I$ and for every $i \geq 1, s_i \rightarrow s_{i+1}$

For example, one path from our two-process mutual exclusion transition diagram:

 $((n_0, n_1, 0, F, F), (n_0, w_1, 0, F, T), (n_0, c_1, 0, F, T))^{\omega}$

Transition Systems, execution paths

A path in a transition system $\mathcal{M} = (S, I, \rightarrow, L)$ is an infinite sequence of states s_1, s_2, s_3, \ldots such that $s_1 \in I$ and for every $i \geq 1, s_i \rightarrow s_{i+1}$

For example, one path from our two-process mutual exclusion transition diagram:

 $((n_0, n_1, 0, F, F), (n_0, w_1, 0, F, T), (n_0, c_1, 0, F, T))^{\omega}$

We will use the symbol π for paths. We write $\pi = s_1, s_2, s_3 \dots$ We write π^i to indicate the *i*th suffix of π . e.g. $\pi^3 = s_3, s_4, s_5 \dots$ Transition System Example

$$S = \{0, 1, 2\} \qquad l = \{0\} \qquad AP = \{p, q, r\}$$
$$\rightarrow = \{(0, 1), (1, 0), (0, 2), (1, 2)\}$$
$$L(0) = \{p, q\} \qquad L(1) = \{q, r\} \qquad L(2) = \{r\}$$

Transition System Example

Suppose α and β are LTL formulas. Suppose p_i is a propositional atom. Then the following are all LTL formulas.

Т

Suppose α and β are LTL formulas. Suppose p_i is a propositional atom. Then the following are all LTL formulas.

Т

 p_i

Suppose α and β are LTL formulas. Suppose p_i is a propositional atom. Then the following are all LTL formulas.

Suppose α and β are LTL formulas. Suppose p_i is a propositional atom. Then the following are all LTL formulas.

Suppose α and β are LTL formulas. Suppose p_i is a propositional atom. Then the following are all LTL formulas.

$$T$$

$$\downarrow$$

$$p_i$$

$$\neg \alpha \quad \alpha \lor \beta \quad \alpha \land \beta \quad \alpha \to \beta$$

$$G\alpha \quad F\alpha \quad X\alpha \quad \alpha U\beta \quad \alpha R\beta \quad \alpha W\beta$$

$$Today's focus$$

Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ

- Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ
 - $\pi \models p$ iff $p \in L(s_1) \land p \in AP$ p holds now

- Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ
 - $\pi \models p$ iff $p \in L(s_1) \land p \in AP$ p holds now $\pi \models \neg p$ iff $\pi \not\models p$ $\neg p$ holds now

- Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ
 - $\pi \models p$ iff $p \in L(s_1) \land p \in AP$ p holds now $\pi \models \neg p$ iff $\pi \not\models p$ $\neg p$ holds now $\pi \models p \land q$ iff $\pi \models p \land \pi \models q$ p and q hold now $\pi \models p \lor q$ iff $\pi \models p \lor \pi \models q$ p or q hold now

- Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ
 - $\pi \models p$ iff $p \in L(s_1) \land p \in AP$ p holds now $\pi \models \neg p$ iff $\pi \not\models p$ $\neg p$ holds now $\pi \models p \land q$ iff $\pi \models p \land \pi \models q$ p and q hold now $\pi \models p \lor q$ iff $\pi \models p \lor \pi \models q$ p or q hold now $\pi \models Xp$ iff $\pi^2 \models p$ p holds next

- Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ
 - $\pi \models p$ iff p holds now $p \in L(s_1) \land p \in AP$ $\pi \models \neg p$ iff $\pi \not\models p$ $\neg p$ holds **now** p and q hold now $\pi \models p \land q$ iff $\pi \models p \land \pi \models q$ p or q hold now $\pi \models p \lor q$ iff $\pi \models p \lor \pi \models q$ $\pi^2 \models p$ $\pi \models Xp$ iff p holds next $\forall i \geq 1$ $\pi^i \models p$ $\pi \models Gp$ iff p holds always

- Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ
 - $\pi \models \rho$ iff p holds now $p \in L(s_1) \land p \in AP$ $\pi \models \neg p$ iff $\pi \not\models p$ $\neg p$ holds **now** $\pi \models p \land q$ iff $\pi \models p \land \pi \models q$ p and q hold now p or q hold now $\pi \models p \lor q$ iff $\pi \models p \lor \pi \models q$ $\pi^2 \models p$ iff $\pi \models Xp$ p holds next $\forall i \geq 1 \quad \pi^i \models p$ $\pi \models Gp$ iff p holds always $\pi \models Fp$ iff $\exists i \geq 1$ $\pi^i \models p$ *p* holds eventually

- Semantics of Linear Temporal Logic Formulas Suppose π is a path and p and q are LTL formulas. We write $\pi \models \phi$ to mean that a path satisfies an LTL formula ϕ
 - $\pi \models p$ iff $p \in L(s_1) \land p \in AP$ p holds now $\pi \models \neg p$ iff $\pi \neq p$ $\neg p$ holds **now** $\pi \models p \land q$ iff $\pi \models p \land \pi \models q$ p and q hold now p or q hold now $\pi \models p \lor \pi \models q$ $\pi \models p \lor q$ iff $\pi^2 \models p$ iff $\pi \models Xp$ p holds next $\pi \models Gp$ iff $\forall i \geq 1$ $\pi^i \models p$ p holds always $\exists i \geq 1 \quad \pi^i \models p$ $\pi \models Fp$ iff *p* holds eventually $\pi \models pUq$ iff $\exists i \geq 1 \quad \pi^i \models q \land$ *p* holds **until** *q* holds $\forall 1 \leq i < i \quad \pi^j \models p$

We just defined what it means for a path to satisfy a property, $\pi \models \phi$.

We just defined what it means for a path to satisfy a property, $\pi \models \phi$.

Now, let's define what it means for a transition system to satisfy a property, $\mathcal{M} \models \phi$.

We just defined what it means for a path to satisfy a property, $\pi \models \phi$.

Now, let's define what it means for a transition system to satisfy a property, $\mathcal{M} \models \phi$.

We say that transition system \mathcal{M} satisfies property ϕ if for every path π of \mathcal{M} , $\pi \models \phi$.

We just defined what it means for a path to satisfy a property, $\pi \models \phi$.

Now, let's define what it means for a transition system to satisfy a property, $\mathcal{M} \models \phi$.

We say that transition system \mathcal{M} satisfies property ϕ if for every path π of \mathcal{M} , $\pi \models \phi$.

 $\mathcal{M} \models \phi \Leftrightarrow \forall \pi \mid \pi \models \phi \mid$ LTL Model Checking

LTL Model Checking $\mathcal{M} \models \phi \Leftrightarrow \forall \pi \ [\pi \models \phi]$

LTL Model Checking $\mathcal{M} \models \phi \Leftrightarrow \forall \pi \ [\pi \models \phi]$

 $\mathcal{M} \not\models \phi \Leftrightarrow \exists \pi \ [\pi \models \neg \phi]$ Counterexample path!

Does G distribute over \lor ? $G(p \lor q) \equiv Gp \lor Gq$?

```
Does G distribute over \lor?

G(p \lor q) \equiv Gp \lor Gq?

Does G distribute over \land?

G(p \land q) \equiv Gp \land Gq?
```

Does G distribute over \vee ? $G(p \lor q) \equiv Gp \lor Gq$? Does G distribute over \wedge ? $G(p \wedge q) \equiv Gp \wedge Gq$? Does F distribute over \vee ? $F(p \lor q) \equiv Fp \lor Fq$? Does F distribute over \wedge ? $F(p \wedge q) \equiv Fp \wedge Fq$?

Does G distribute over \vee ? $G(p \lor q) \equiv Gp \lor Gq$? Does G distribute over \wedge ? $G(p \wedge q) \equiv Gp \wedge Gq$? Does F distribute over \vee ? $F(p \lor q) \equiv Fp \lor Fq$? Does F distribute over \wedge ? $F(p \wedge q) \equiv Fp \wedge Fq$? Do U and X have any distributive properties?

 $X(p \lor q) \equiv \dots \qquad (p \land q)U(r \land t) \equiv \dots$

Do G and F commute? $FGp \equiv GFp$?

Do G and F commute? $FGp \equiv GFp$?

FGp \mathcal{M} converges to pGFpinfinitely often p

Transition System Example

Do these properties hold?

Transition System Example Do these properties hold? $\mathcal{M} \models p \land q$

Transition System Example

Do these properties hold?

$$\mathcal{M} \models p \land q$$

$$\mathcal{M} \models \neg r$$

Transition System Example Do these properties hold? $\mathcal{M} \models p \land q$ $\mathcal{M} \models \neg r$ $\mathcal{M} \models Xr$

П

n

Transition System Example Do these properties hold? $\mathcal{M} \models p \land q$ $\mathcal{M} \models \neg r$ $\mathcal{M} \models Xr$ $\mathcal{M} \models X(q \land r)$

Transition System Example Do these properties hold? $\mathcal{M} \models p \land q$ $\mathcal{M} \models \neg r$ $\mathcal{M} \models Xr$ $\mathcal{M} \models X(q \land r)$ $\mathcal{M} \models G \neg (p \land r)$

Transition System Example Do these properties hold? $\mathcal{M} \models p \land q$ $\mathcal{M} \models \neg r$ $\mathcal{M} \models Xr$ $\mathcal{M} \models X(q \land r)$ $\mathcal{M} \models G \neg (p \land r)$ $\mathcal{M} \models GFp$

Linear Temporal Logic (LTL)

We will assign symbols for expressing temporal system requirements like *always* (*G*), *eventually* (*F*), *next* (*X*), *until* (*U*), and a few more. We will give a formal and unambiguous semantics to these symbols.

Transition Systems

We will learn a formal system of specifying transition systems (which we often depict as a transition diagram).

Concurrency Concepts

Safety, liveness, mutual exclusion, ...

Verification Software

Symbolic Model Verifier (NuSMV)

Linear Temporal Logic (LTL)

We will assign symbols for expressing temporal system requirements like *always* (*G*), *eventually* (*F*), *next* (*X*), *until* (*U*), and a few more. We will give a formal and unambiguous semantics to these symbols.

Transition Systems

We will learn a formal system of specifying transition systems (which we often depict as a transition diagram).

Concurrency Concepts

Safety, liveness, mutual exclusion, ...

Verification Software

Symbolic Model Verifier (NuSMV)

