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Linear Temporal Logic (LTL)
We will assign symbols for expressing temporal system
requirements like always (G), eventually (F ), next (X ),
until (U), and a few more. We will give a formal and
unambiguous semantics to these symbols.

Transition Systems
We will learn a formal system of specifying
transition systems (which we often depict as a
transition diagram).

Next Few Weeks:

Concurrency Concepts
Safety, liveness, mutual exclusion, . . .

Temporal Logic Software
Symbolic Model Verifier (NuSMV)
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Many important properties have a temporal component.

The light eventually turns green.
The door eventually opens.
Two processes are never in the critical
section at the same time.
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Temporal Logic and Transition Systems

We will give meaning to temporal logic formulas
with respect to transitions systems. So, let’s talk
about transition systems first.
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Transition Systems
A transition system M = (S, I, →, L) is a set of states S
and a set of initial states I , along with a transition
relation → and labelling function L.

The transition relation → is equivalent to a set of
directed graph edges, with the states as nodes.

For example, ((n0, n1, 0, F , F ), (n0, w1, 0, F , T )) ∈→

Alternatively, we can write
(n0, n1, 0, F , F ) → (n0, w1, 0, F , T ).

Important assumption: no dead states. Every state
has an outgoing transition, even if only to itself.



Transition Systems, execution paths

A path in a transition system M = (S, I, →, L) is
an infinite sequence of states s1, s2, s3, . . .
such that s1 ∈ I and for every i ≥ 1, si → si+1
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Transition Systems, execution paths

A path in a transition system M = (S, I, →, L) is
an infinite sequence of states s1, s2, s3, . . .
such that s1 ∈ I and for every i ≥ 1, si → si+1

For example, one path from our two-process mutual
exclusion transition diagram:
((n0, n1, 0, F , F ), (n0, w1, 0, F , T ), (n0, c1, 0, F , T ))ω

We will use the symbol π for paths.
We write π = s1, s2, s3 . . .
We write πi to indicate the ith suffix of π.
e.g. π3 = s3, s4, s5 . . .



Transition System Example

S = {0, 1, 2}
→= {(0, 1), (1, 0), (0, 2), (1, 2)}

L(0) = {p, q} L(1) = {q, r} L(2) = {r}

AP = {p, q, r}I = {0}
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S = {0, 1, 2}
→= {(0, 1), (1, 0), (0, 2), (1, 2)}

L(0) = {p, q} L(1) = {q, r} L(2) = {r}

AP = {p, q, r}I = {0}
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Syntax of Linear Temporal Logic Formulas

Suppose α and β are LTL formulas.
Suppose pi is a propositional atom.
Then the following are all LTL formulas.

⊤
⊥
pi
¬α α ∧ βα ∨ β α → β
Gα Fα Xα αUβ αRβ αW β

Today’s focus



Semantics of Linear Temporal Logic Formulas
Suppose π is a path and p and q are LTL formulas.
We write π |= φ to mean that a path satisfies an LTL
formula φ
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formula φ

π |= p iff p ∈ L(s1) ∧ p ∈ AP p holds now
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Semantics of Linear Temporal Logic Formulas
Suppose π is a path and p and q are LTL formulas.
We write π |= φ to mean that a path satisfies an LTL
formula φ

π |= p
π |= ¬p
π |= p ∧ q
π |= p ∨ q
π |= Xp
π |= Gp
π |= Fp
π |= pUq

iff
iff
iff
iff
iff
iff
iff
iff

p ∈ L(s1) ∧ p ∈ AP
π ̸|= p
π |= p ∧ π |= q
π |= p ∨ π |= q
π2 |= p
∀i ≥ 1 πi |= p
∃i ≥ 1 πi |= p

∃i ≥ 1 πi |= q ∧
∀ 1 ≤ j < i πj |= p

p holds now
¬p holds now
p and q hold now
p or q hold now
p holds next
p holds always
p holds eventually

p holds until q holds



Semantics of Linear Temporal Logic Formulas

We just defined what it means for a path to satisfy
a property, π |= φ.
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if for every path π of M, π |= φ.



Semantics of Linear Temporal Logic Formulas

We just defined what it means for a path to satisfy
a property, π |= φ.
Now, let’s define what it means for a transition
system to satisfy a property, M |= φ.

We say that transition system M satisfies property φ
if for every path π of M, π |= φ.

M |= φ ⇔ ∀π [π |= φ]
LTL Model Checking



Semantics of Linear Temporal Logic Formulas

M |= φ ⇔ ∀π [π |= φ]
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Semantics of Linear Temporal Logic Formulas

M |= φ ⇔ ∀π [π |= φ]
LTL Model Checking

M ̸|= φ ⇔ ∃π [π |= ¬φ]
Counterexample path!
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Does G distribute over ∨?
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Some exercises

Does G distribute over ∨?
G(p ∨ q) ≡ Gp ∨ Gq ?

Does G distribute over ∧?
G(p ∧ q) ≡ Gp ∧ Gq ?

Does F distribute over ∨?
F (p ∨ q) ≡ Fp ∨ Fq ?

Does F distribute over ∧?
F (p ∧ q) ≡ Fp ∧ Fq ?

Do U and X have any distributive properties?
(p ∧ q)U(r ∧ t) ≡ . . .X (p ∨ q) ≡ . . .



Some exercises

Do G and F commute?
FGp ≡ GFp ?



Some exercises

Do G and F commute?
FGp ≡ GFp ?

FGp M converges to p

GFp infinitely often p
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M |= p ∧ q
Do these properties hold?

M |= ¬r
M |= Xr
M |= X (q ∧ r)
M |= G¬(p ∧ r)
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Verification Software
Symbolic Model Verifier (NuSMV)
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