Symbolic Model Checking Using Py-Z3
Reactive System Code satisfies Requirements:

- Reactive System Code
- Transition System
- Temporal Logic Formula ϕ

Model Checking
Reactive System Code satisfies Requirements.

Requirements satisfies Temporal Logic Formula ϕ.

Symbolic Model Checking

Transition System
Reactive System Code satisfies Requirements

Transition System satisfies Temporal Logic Formula

Represent M using Boolean logic.
Check $M \models \phi$ by logic manipulations.
Variable Replacement

We often need to replace variables with other expressions. For a formula \(f \), variable \(v \), and expression \(e \), we write \(f[e/v] \) to indicate a new formula that is the same as \(f \) but with all occurrences of \(v \) replaced by \(e \).

Example: \(f = \neg x \land \neg y \)

\[
\begin{align*}
 f[z/x] &= \neg z \land \neg y \\
 f[T/x] &= \neg T \land \neg y \equiv F \land \neg y \equiv F \\
 f[F/y] &= \neg x \land \neg F \equiv \neg x \land T \equiv \neg x
\end{align*}
\]

We can do several variables at once:

\[
\begin{align*}
 f[(-w, F)/(x, y)] &= \neg \neg w \land \neg F = w
\end{align*}
\]
Existential Quantifier Elimination

For a formula f, we can “get rid” of a variable ν by

1. writing $\exists \nu : f$
2. plugging in all possible values of ν into f and taking a disjunction.
Existential Quantifier Elimination

For a formula f, we can “get rid” of a variable v by

1. writing $\exists v : f$
2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$
For a formula f, we can “get rid” of a variable v by

1. writing $\exists v : f$
2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

Example: $f = \neg x \land \neg y$
Existential Quantifier Elimination

For a formula f, we can “get rid” of a variable ν by

1. writing $\exists \nu : f$
2. plugging in all possible values of ν into f and taking a disjunction.

For Boolean formulas:

$$\exists \nu : f \equiv f[T/\nu] \lor f[F/\nu]$$

Example: $f = \neg x \land \neg y$

$$\exists y : f \equiv : f[T/y] \lor f[F/y]$$
Existential Quantifier Elimination

For a formula f, we can “get rid” of a variable v by

1. writing $\exists v : f$
2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

Example: $f = \neg x \land \neg y$

$$\exists y : f \equiv : f[T/y] \lor f[F/y]$$

$$\equiv (\neg x \land \neg T) \lor (\neg x \land \neg F)$$
Existential Quantifier Elimination

For a formula f, we can “get rid” of a variable v by

1. writing $\exists v : f$
2. plugging in all possible values of v into f and taking a disjunction.

For Boolean formulas:

$$\exists v : f \equiv f[T/v] \lor f[F/v]$$

Example: $f = \neg x \land \neg y$

$$\exists y : f \equiv f[T/y] \lor f[F/y]$$

$$\equiv (\neg x \land \neg T) \lor (\neg x \land \neg F)$$

$$\equiv F \lor \neg x \equiv \neg x$$

No more y
Explicit Model Representation

The transition system \mathcal{M} is specified by literally listing out all of the pieces.
Explicit Model Representation

The transition system \mathcal{M} is specified by literally listing out all of the pieces.
Explicit Model Representation

The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States: $S = \{0, 1, 2, 3\}$
The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States: $S = \{0, 1, 2, 3\}$

Initial States: $I = \{0\}$
The transition system M is specified by literally listing out all of the pieces.

States: $S = \{0, 1, 2, 3\}$

Initial States: $I = \{0\}$

Transitions:

$$R = \{ (0, 1), (0, 2), (1, 3), (2, 3), (1, 0), (2, 0), (3, 1), (3, 2) \}$$
The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States: $S = \{0, 1, 2, 3\}$

Initial States: $I = \{0\}$

Transitions:

$$R = \{ (0, 1), (0, 2), (1, 3), (2, 3), (1, 0), (2, 0), (3, 1), (3, 2) \}$$

Atomic Propositions: $AP = \{p, q, r\}$
The transition system \mathcal{M} is specified by literally listing out all of the pieces.

States: $S = \{0, 1, 2, 3\}$

Initial States: $I = \{0\}$

Transitions:

$$R = \{ (0, 1), (0, 2), (1, 3), (2, 3), (1, 0), (2, 0), (3, 1), (3, 2) \}$$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L} : S \rightarrow \mathcal{P}(AP)$

$\mathcal{L}(0) = \{r\}$

$\mathcal{L}(2) = \{r, q\}$

$\mathcal{L}(1) = \{r\}$

$\mathcal{L}(1) = \{p, q\}$
Symbolic Model Representation

Represent M using Boolean logic.
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

\[
\begin{array}{c}
\{r\} \\
0 \\
\{r, q\} \\
2 \\
1 \\
\{p, q\} \\
3 \\
\end{array}
\]
Symbolic Model Representation

Represent M using Boolean logic.

```
\{r\} \rightarrow 0 \rightarrow 1 \rightarrow \{r\} \\
\{r, q\} \rightarrow 2 \rightarrow 3 \rightarrow \{p, q\}
```

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>x 0</td>
</tr>
<tr>
<td>1</td>
<td>y 1</td>
</tr>
<tr>
<td>2</td>
<td>x 1</td>
</tr>
<tr>
<td>3</td>
<td>y 1</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent M using Boolean logic.

\begin{center}
\begin{tabular}{c|c|c|c|c|c|c|c}
\hline
\textbf{States} & \textbf{binary} & \textbf{truth values} \\
\hline
& x & y & x & y \\
\hline
0 & 0 & 0 & F & F \\
1 & 0 & 1 & F & T \\
2 & 1 & 0 & T & F \\
3 & 1 & 1 & T & T \\
\hline
\end{tabular}
\end{center}
Symbolic Model Representation

Represent M using Boolean logic.

Boolean state variables

$V = \{x, y\}$

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>0</td>
<td>0 0</td>
<td>F F</td>
</tr>
<tr>
<td>1</td>
<td>0 1</td>
<td>F T</td>
</tr>
<tr>
<td>2</td>
<td>1 0</td>
<td>T F</td>
</tr>
<tr>
<td>3</td>
<td>1 1</td>
<td>T T</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

Boolean state variables

$$V = \{x, y\}$$

States and truth values

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>$\neg x \land \neg y$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\neg x \land y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x \land \neg y$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$x \land y$</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>T</td>
</tr>
</tbody>
</table>

The transition diagram shows the states and transitions between them, with symbols $\{p, q\}$ and $\{r\}$.

The states are represented as FF, FT, TF, and TT, with corresponding binary and truth values.
Symbolic Model Representation

Represent M using Boolean logic.

Initial State: $\neg x \land \neg y$

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>T</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>T</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent M using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L}: S \rightarrow \mathcal{P}(AP)$

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>x y</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>F F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>F T</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>T F</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>T T</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L} : S \rightarrow \mathcal{P}(AP)$

States

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td>x</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L} : S \rightarrow 2^{AP}$

$\mathcal{L} : AP \rightarrow \mathcal{F}(x, y)$

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td></td>
<td>x</td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>$\neg x \land \neg y$</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>$\neg x \land y$</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>$x \land \neg y$</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>$x \land y$</td>
</tr>
</tbody>
</table>

Diagram of states and transitions:
Symbolic Model Representation

Represent M using Boolean logic.

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L} : S \to \mathcal{P}(AP)$

$p \equiv x \land y$
$q \equiv x$
$r \equiv \neg(x \land y) \equiv \neg p$

<table>
<thead>
<tr>
<th>States</th>
<th>binary</th>
<th>truth values</th>
<th>Boolean formula</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>$\neg x \land \neg y$</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>T</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>T</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>T</td>
</tr>
</tbody>
</table>
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

Transitions:
Let the “next” state variables be $V' = \{x', y'\}$
Represent \mathcal{M} using Boolean logic.

Transitions:
Let the "next" state variables be $V' = \{x', y'\}$

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

Transitions:
Let the “next” state variables be $V' = \{x', y'\}$

\[R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \]

“we can get from one state to the next by keeping one variable the same and negating the other”
Symbolic Model Representation

Represent \mathcal{M} using Boolean logic.

Transitions:
Let the “next” state variables be $V' = \{x', y'\}$

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]

Explicit transitions:

<table>
<thead>
<tr>
<th>(0, 1)</th>
<th>(2, 3)</th>
<th>(1, 3)</th>
<th>(0, 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 0)</td>
<td>(3, 2)</td>
<td>(3, 1)</td>
<td>(2, 0)</td>
</tr>
</tbody>
</table>

“we can get from one state to the next by keeping one variable the same and negating the other”
Reactive System Code satisfies \models Requirements

Transition System satisfies \models Temporal Logic Formula ϕ

Symbolic Model Checking

Represent M using Boolean logic. Check $M \models \phi$ by logic manipulations.
The Algorithm for $EX \phi$

After labelling all states s that satisfy ϕ, label and state s' with $EX\phi$ if there is a transition from s' to s.

![Diagram with states and transitions](image)
The Algorithm for $EX\phi$

After labelling all states s that satisfy ϕ, label and state s' with $EX\phi$ if there is a transition from s' to s.

![Diagram showing state transitions and labels $EX\phi$, s', s, and ϕ.]
The Algorithm for $EX \phi$

After labelling all states s that satisfy ϕ, label and state s' with $EX\phi$ if there is a transition from s' to s.

Call this process $SAT_{EX}(\phi)$
Symbolic Model Checking

How to compute $EX \phi$ symbolically.
Symbolic Model Checking

How to compute $EX \phi$ symbolically.

$$EX \phi \equiv \exists V' \ R \land \phi[V'/V]$$
Symbolic Model Checking

How to compute $EX \ \phi$ symbolically.

$$EX \ \phi \equiv \exists V' \ R \ \land \ \phi[V'/V]$$

exists a path where ϕ holds in the next state.
Symbolic Model Checking

How to compute $EX \phi$ symbolically.

$$EX \phi \equiv \exists V' \ R \land \phi[V' / V]$$

exists a path where ϕ holds in the next state

there is some assignment for the next state variables
Symbolic Model Checking

How to compute $EX \phi$ symbolically.

$$EX \phi \equiv \exists V' \quad R \land \phi[V'/V]$$

- exists a path where ϕ holds in the next state
- there is some assignment for the next state variables
- obeys the transition relation
Symbolic Model Checking

How to compute $EX \phi$ symbolically.

$EX \phi \equiv \exists V' \ R \land \phi[V'/V]$

- exists a path where ϕ holds in the next state
- there is some assignment for the next state variables
- obeys the transition relation
- ϕ holds when variables are updated with the new state variables
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{ p, q, r \} \)

Labelling Function \(\mathcal{L} : AP \rightarrow \mathcal{F}(x, y) \)

\[
p \equiv x \land y \\
q \equiv x \\
r \equiv \neg(x \land y)
\]

Transition Relation:

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{ p, q, r \} \)

Labelling Function \(\mathcal{L} : AP \rightarrow F(x, y) \)

\[
\begin{align*}
p & \equiv x \land y \\
qu & \equiv x \\
r & \equiv \neg(x \land y)
\end{align*}
\]

Transition Relation:

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]

Let's compute \(EX \ p \)
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{p, q, r\} \)

Labelling Function \(\mathcal{L} : AP \rightarrow \mathcal{F}(x, y) \)

\[
p \equiv x \land y \quad q \equiv x \quad r \equiv \neg(x \land y)
\]

Transition Relation:

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]

Let's compute \(EX \ p \)
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{ p, q, r \} \)

Labelling Function : \(L: AP \rightarrow \mathcal{F}(x, y) \)

- \(p \equiv x \land y \)
- \(q \equiv x \)
- \(r \equiv \neg(x \land y) \)

Transition Relation:

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]

Let’s compute \(EX \ p \)

\[
EX \ p \equiv \exists V' \ R \land p[V' /V]
\]
Symbolic Model Checking

Initial State: $\neg x \land \neg y$

Atomic Propositions: $AP = \{p, q, r\}$

Labelling Function $\mathcal{L} : AP \rightarrow \mathcal{F}(x, y)$

\[
p \equiv x \land y \quad q \equiv x \quad r \equiv \neg(x \land y)
\]

Transition Relation:

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]

Let's compute $EX \ p$

\[
EX \ p \equiv \exists V' \ R \land p[V'/V]
\]

\[
EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]
Symbolic Model Checking

Initial State: \(\neg x \land \neg y\)

Atomic Propositions: \(AP = \{p, q, r\}\)

Labelling Function \(L : AP \rightarrow F(x, y)\)
\[p \equiv x \land y\]
\[q \equiv x\]
\[r \equiv \neg(x \land y)\]

Transition Relation:
\[R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)\]

Let's compute \(EX\ p\)

\[EX\ p \equiv \exists V'\ R \land p[V'/V]\]
\[EX\ p \equiv \exists x', y'\ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')\]

...some Boolean simplifications ...
Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{p, q, r\} \)

Labelling Function \(\mathcal{L} : AP \to \mathcal{F}(x, y) \)
\[
\begin{align*}
p & \equiv x \land y \\
q & \equiv x \\
r & \equiv \neg(x \land y)
\end{align*}
\]

Transition Relation:
\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

Let's compute \(EX \ p \)

\[
EX \ p \equiv \exists V' \ R \land p[V'/V]
\]
\[
EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

...some Boolean simplifications ...

\[
EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)
\]
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{p, q, r\} \)

Labelling Function \(\mathcal{L} : AP \rightarrow \mathcal{F}(x, y) \)

\[
\begin{align*}
p & \equiv x \land y \\
q & \equiv x \\
r & \equiv \neg(x \land y)
\end{align*}
\]

Transition Relation:

\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)
\]

Let's compute \(EX \ p \)

\[
EX \ p \equiv \exists V' \ R \land p[V' / V]
\]

\[
EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

…some Boolean simplifications …

\[
EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)
\]

…existential quantifier elimination …
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{ p, q, r \} \)

Labelling Function \(L : AP \rightarrow F(x, y) \)
\[p \equiv x \land y \quad q \equiv x \quad r \equiv \neg(x \land y) \]

Transition Relation:
\[R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y') \]

Let's compute \(EX \ p \)

\[
EX \ p \equiv \exists V' \ R \land p[V' / V]
\]

\[
EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

...some Boolean simplifications ...

\[
EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)
\]

...existential quantifier elimination ...

\[
EX \ p \equiv (x \land \neg y) \lor (\neg x \land y)
\]
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{ p, q, r \} \)

Labelling Function
\[
\mathcal{L} : AP \rightarrow \mathcal{F}(x, y) \\
p \equiv x \land y \\
q \equiv x \\
r \equiv \neg (x \land y)
\]

Transition Relation:
\[
R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

Let's compute \(EX \ p \)

\[
EX \ p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

...some Boolean simplifications ...

\[
EX \ p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)
\]

...existential quantifier elimination ...

\[
EX \ p \equiv (x \land \neg y) \lor (\neg x \land y)
\]

Which states does this formula represent?
Symbolic Model Checking

Initial State: \(\neg x \land \neg y \)

Atomic Propositions: \(AP = \{ p, q, r \} \)

Labelling Function \(\mathcal{L} : AP \rightarrow \mathcal{F}(x, y) \)
\[
 p \equiv x \land y \\
 q \equiv x \\
 r \equiv \neg(x \land y)
\]

Transition Relation:
\[
 R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

Let's compute \(\text{EX } p \)

\[
 \text{EX } p \equiv \exists V' \ R \land p[V' / V]
\]

\[
 \text{EX } p \equiv \exists x', y' \ (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \land (x' \land y')
\]

...some Boolean simplifications ...

\[
 \text{EX } p \equiv \exists x', y' \ (x' \land x \land y' \land \neg y) \lor (x' \land \neg x \land y' \land y)
\]

...existential quantifier elimination ...

\[
 \text{EX } p \equiv (x \land \neg y) \lor (\neg x \land y)
\]
Symbolic Model Checking

All of the boolean operations we have described for performing symbolic model checking (conjunction, disjunction, existential variable elimination) can be accomplished by:

1. Boolean algebra
2. Using BDDs
3. Using a theorem prover
We can translate the \(EX \phi \) formula into Z3.

\[
EX \phi \equiv \exists V' \ R \land \phi[V' / V]
\]

Example: \(R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y) \)

\(\phi \equiv p \equiv x \land y \)

(declare-const x Bool)
(declare-const y Bool)
(assert
(exists ((x_ Bool) (y_ Bool))
(and
(or
(and (= x_ x) (= y_ (not y)))
(and (= x_ (not x)) (= y_ y)))
(and x_ y_)))
(apply qe)
(check-sat)
We can translate the $EX \phi$ formula into Z3.

$$EX \phi \equiv \exists V' R \land \phi[V'/V]$$

Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$

$\phi \equiv p \equiv x \land y$

```
(declare-const x Bool)
(declare-const y Bool)
(assert
(exists ((x_ Bool) (y_ Bool))
(and
(or
(and (= x_ x) (= y_ (not y)))
(and (= x_ (not x)) (= y_ y)))
(and x_ y_))))
(apply qe)
(check-sat)
```
Symb. Mod. Check. using a Theorem Prover

We can translate the $EX \phi$ formula into Z3.

$$EX \phi \equiv \exists V' \ [R] \land \phi[V'/V]$$

Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$

$\phi \equiv p \equiv x \land y$

(declare-const x Bool)
(declare-const y Bool)
(assert
(exists ((x_ Bool) (y_ Bool))
(and
(or
(and (= x_ x) (= y_ (not y)))
(and (= x_ (not x)) (= y_ y)))
(and x_ y_))))
(apply qe)
(check-sat)
We can translate the $EX \phi$ formula into Z3.

$$EX \phi \equiv \exists V' \ R \land \phi[V'/V]$$

Example:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

$$\phi \equiv p \equiv x \land y$$

```
(declare-const x Bool)
(declare-const y Bool)
(assert
(exists ((x_ Bool) (y_ Bool))
(and
(or
(and (= x_ x) (= y_ (not y)))
(and (= x_ (not x)) (= y_ y)))
(and x_ y_))))
(apply qe)
(check-sat)
```
We can translate the $EX \phi$ formula into Z3.

$$EX \phi \equiv \exists V' \ R \land \phi[V'/V]$$

Example: $R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$

$$\phi \equiv p \equiv x \land y$$

(declare-const x Bool)
(declare-const y Bool)
(assert
(exists ((x_ Bool) (y_ Bool))
(and
(or
(and (= x_ x) (= y_ (not y)))
(and (= x_ (not x)) (= y_ y)))
(and x_ y_)))
(apply qe)
(check-sat)
We can translate the $EX \phi$ formula into Z3.

$$EX \phi \equiv \exists V' \ R \land \phi[V'/V]$$

Example:

$$R \equiv (x' = x \land y' = \neg y) \lor (x' = \neg x \land y' = y)$$

$$\phi \equiv p \equiv x \land y$$

```lisp
(declare-const x Bool)
(declare-const y Bool)
(assert
(exists ((x_ Bool) (y_ Bool))
    (and
        (or
            (and (= x_ x) (= y_ (not y)))
            (and (= x_ (not x)) (= y_ y)))
        (and x_ y_))))
(apply qe)
(check-sat)
```

$$\phi \equiv p \equiv x \land y$$