Parameterized Model Counting for String and Numeric Constraints

Abdulbaki Aydin¹, William Eiers², Lucas Bang³, Tegan Brennan², Miroslav Gavrilov², Tevfik Bultan², Fang Yu⁴

¹ Microsoft
² University of California Santa Barbara
³ Harvey Mudd College
⁴ National Chengchi University, Taiwan
Quantitative program analysis

Given a program, quantitative program analysis can determine:

- Probability of program behaviors
- Number of inputs that cause an error
- Amount of information leakage

Quantitative program analysis requires model counting:

- Counting the number of satisfying solutions (models) for a given constraint

Our tool MT-ABC is the most expressive model-counting constraint solver!
MT-ABC: Model counting constraint solver

INPUT

- formula

\[\varphi \]

OUTPUT

- counting function
 - \#\varphi
 - bound k

\# of models within bound k for which \(\varphi \) evaluates to true
MT-ABC: Expressive constraint language

- Language agnostic, supports SMT2Lib format
- Supports string and numeric constraints and their combinations

\[
\varphi \rightarrow \varphi \land \varphi \mid \varphi \lor \varphi \mid \neg \varphi \mid \varphi_Z \mid \varphi_S \mid T \mid \bot
\]

\[
\varphi_Z \rightarrow \beta = \beta \mid \beta < \beta \mid \beta > \beta
\]

\[
\varphi_S \rightarrow \gamma = \gamma \mid \gamma < \gamma \mid \gamma > \gamma \mid \text{match}(\gamma, \rho) \mid \text{contains}(\gamma, \gamma) \mid \text{begins}(\gamma, \gamma) \mid \text{ends}(\gamma, \gamma)
\]

\[
\beta \rightarrow \nu_i \mid n \mid \beta + \beta \mid \beta - \beta \mid \beta \times n
\]
\[
\mid \text{length}(\gamma) \mid \text{toint}(\gamma) \mid \text{indexof}(\gamma, \gamma) \mid \text{lastindexof}(\gamma, \gamma)
\]

\[
\gamma \rightarrow \nu_s \mid \rho \mid \gamma \cdot \gamma \mid \text{reverse}(\gamma) \mid \text{tostring}(\beta) \mid \text{charat}(\gamma, \beta) \mid \text{toupper}(\gamma) \mid \text{tolower}(\gamma)
\]
\[
\mid \text{substring}(\gamma, \beta, \beta) \mid \text{replacefirst}(\gamma, \gamma, \gamma) \mid \text{replacelast}(\gamma, \gamma, \gamma) \mid \text{replaceall}(\gamma, \gamma, \gamma)
\]

\[
\rho \rightarrow \varepsilon \mid s \mid \rho \cdot \rho \mid \rho \mid \rho^*
\]
MT-ABC in a nutshell

Automata-based constraint solving

Why?
MT-ABC in a nutshell

Automata-based constraint solving

Basic idea:

Automata can represent sets of strings

Represent satisfying solutions for constraints as strings

Construct an automaton that accepts satisfying solutions for a given constraint

This reduces the model counting problem to path counting

Given some bound, count the number of paths in a graph
Automata-based constraint solving

Generate automaton that accepts satisfying solutions for the constraint

MT-ABC can handle both
string and integer constraints

- Constraints over only string variables
 (e.g., v = “abcd”)
- Constraints over only integer variables
 (e.g., i = 2xj)
- Constraints over both string and integer variables
 (e.g., length(v) = i)
Automata-based constraint solving: Strings, ¬

Basic string constraints are directly mapped to automata

\[v = "ab" \]

\[\text{match}(v, (ab)^\ast) \]

\[\neg\text{match}(v, (ab)^\ast) \]
Automata-based constraint solving: Strings, \neg, \land, \lor

More complex constraints are solved by creating automata for subformulae then combining their results

$$\neg \text{match}(v, (ab)^*) \land \text{length}(v) = 2$$

automata
product
Automata-based constraint solving: Strings, ¬, ∧, ∨

More complex constraints are solved by creating automata for subformulae then combining their results

\[\neg \text{match}(v, (ab)^*) \land \text{length}(v) = 2 \]
Automata-based constraint solving: Multi-variable

For multi-variable constraints, generate an automaton for each variable

\[
\begin{align*}
\nu = t & \quad \nu \neq t & \quad \nu = t \land \nu \neq t
\end{align*}
\]
Automata-based constraint solving: Multi-variable

For multi-variable constraints, generate an automaton for each variable

\[v = t \]
\[v \neq t \]

\[v = t \land v \neq t \]

Not Satisfiable!
Automata-based constraint solving: Multi-variable

Traditional string automata cannot precisely capture relational constraints

Generated automata significantly over-approximate # of satisfying solutions

Can we do better?

YES!

Enter Multi-track Automata...
Multi-track automata

Multi-track automaton \(=\) DFA accepting tuples of strings

Each track represents the values of a single variable

\[v = t \]

Preserves relations between variables!
Multi-track automata

Padding symbol $\lambda \notin \Sigma$ used to align tracks of different length
- Appears at the end

Correctly encodes unsatisfiability!
Multi-track automata can also solve numeric constraints

- Each track represents a single numeric variable
- Encoded as binary integers in 2’s complement form
Constraint Solving: Algorithm

1. Push negations down to atomic constraints
2. Solve atomic string (φ_S) and integer ($\varphi_\mathbb{Z}$) constraints
 ○ Initially all variables are unconstrained
3. Solve mixed constraints
4. Handle disjunctions using automata product
5. Handle conjunctions using automata product
6. If there is an over-approximation under a conjunction, solve atomic constraints that cause over-approximation again
 ○ This time initialize variables with the latest computed values
Constraint Solving: Example

\[i = 2 \times j \land \text{length}(v) = i \]
MT-ABC: Model counting constraint solver

INPUT

- formula

OUTPUT

- counting function
- bound k
- # of models within bound k for which φ evaluates to true

φ

MT-ABC
Automata-based model counting

- Mapping constraints to automata reduces the model counting problem to path counting in graphs

\[\varphi \equiv \neg \text{match}(\nu, (ab)^*) \]

- We generate a function \(f(k) \)
 - Given a length bound \(k \), it will count the number of accepting paths with length \(k \)
Parameterized Model Counting

\[\varphi \equiv \neg \text{match}(v, (ab)^*) \]

\[
T = \begin{bmatrix}
0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 0 \\
\end{bmatrix},
\quad T^2 = \begin{bmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & 3 & 1 \\
0 & 0 & 4 & 2 \\
0 & 0 & 0 & 0 \\
\end{bmatrix},
\quad T^3 = \begin{bmatrix}
0 & 1 & 7 & 3 \\
1 & 0 & 7 & 4 \\
0 & 0 & 8 & 4 \\
0 & 0 & 0 & 0 \\
\end{bmatrix},
\quad T^4 = \begin{bmatrix}
0 & 1 & 15 & 8 \\
1 & 0 & 15 & 7 \\
0 & 0 & 16 & 8 \\
0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

\[f(0) = 0 \quad f(1) = 2 \quad f(2) = 3 \quad f(3) = 8 \]
Experimental evaluation

Compared MT-ABC with existing model counters on a variety of benchmarks

- S3#
 - String constraints, mixed constraints
- SMC
 - String constraints
- ST-ABC
 - String constraints
- LattE
 - Integer constraints
- SMTApproxMC
 - Integer constraints
S3# security benchmark

- String constraint benchmark introduced by authors of S3# to evaluate their tool
 - 14 constraints taken from various security contexts
 - Comparison with SMC, ST-ABC
- We extend the comparison with results from MT-ABC
S3# security benchmark: # of precise results

![Bar chart showing comparison between SMC, ST-ABC, MT-ABC, and S3#]

- SMC: 8
- ST-ABC: 9
- MT-ABC: 14
- S3#: 12
S3# security benchmark: Execution time
S3# security benchmark: Execution time

- S3#
- MT-ABC
Kaluza benchmark

- Kaluza benchmark generated via symbolic execution of JavaScript programs
- Simplified and partitioned into two benchmarks by SMC authors
 - SMCSmall (17544 constraints), SMCBig (1342 constraints)
 - Removed disjunctions and replaced integer variables with constants
- Given a query variable, count the number of solutions with length ≤ 50
 - Evaluated efficiency and precision of MT-ABC with ST-ABC and SMC
Simplified Kaluza benchmark: MT-ABC vs SMC

SMCSmall

MT-ABC more precise than SMC

17388 (99.0%)

SMCBig

MT-ABC as precise as SMC

323 (24.1%)

1019 (75.9%)
Simplified Kaluza benchmark: MT-ABC vs ST-ABC

- MT-ABC more precise than ST-ABC
- MT-ABC as precise as ST-ABC
Integer constraint benchmark

- Compared efficiency of MT-ABC with LattE for model counting linear arithmetic constraints
 - Both tools can precisely model count linear arithmetic constraints
 - Focus on timing comparison between both
- Evaluated each tool on benchmark for varying bit length bounds
Integer constraint benchmark: Execution time

MT-ABC faster execution time

LattE faster execution time
Mixed constraint benchmark

Compare MT-ABC with S3# in the context of mixed string and integer constraints
- Only known model counter claiming to handle this constraint combination

Evaluated using the Kaluza benchmark (unmodified)
- Features mixed string and integer constraints
- Used by S3# authors to prove their claim
Mixed constraint benchmark

- MT-ABC, S3# agree on count for many of the constraints
 - S3# gave same lower/upper bounds
- S3# counts incorrect for the rest
 - Manually confirmed MT-ABC correct
 - S3# lower/upper bounds **incorrect**
Conclusion

- String, numeric and mixed constraints can be mapped to automata
- Automata representation for constraints reduces model counting problem to path counting in graphs
- MT-ABC performs as well as domain specific string and integer model counters
- MT-ABC is the only model counter that can handle mixed string and numeric constraints

Thanks!