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Can you solve it, Will Hunting?
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I Model Counting Boolean Formulas
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A Motivating Example

An adversary learns a password. User must select a new password.

Policy for selecting a new password.

1 public Boolean NewPWCheck(String new_p, old_p){
2 if( old_p.contains(new_p) || ...
3 new_p.contains(old_p) || ...
4 old_p.reverse().contains(new_p)) || ...
5 new_p.contains(old_p.reverse()) ){
6 System.out.println("Too similar.");
7 return false;
8 } else
9 return true;
10 }
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A Motivating Example

Suppose an adversary knows old_p = "abc-16"

and knows the policy.

Constraints on possible values of NEW_P

(not (contains (toLower NEW_P) "abc-16"))
(not (contains (toLower NEW_P) "61-cba"))
(not (contains "abc-16" (toLower NEW_P)))
(not (contains "61-cba" (toLower NEW_P)))

If password length = n, then there are |Σ|n possible passwords.

If adversary knows old_p and the policy . . .

I how much is the reduction in search space?
I what is the probability of guessing the new password?
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Motivation

In general, we want to answer questions regarding

I probability of program behaviors,
I number of inputs that cause an error,
I amount of information flow,
I information leakage,
I other, as yet unforeseen, applications...

These are quantitative questions which require model counting.
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Motivation

Techniques for model counting for other theories

Boolean Logic Formulas
I DPLL
I Random sampling based
I Approximations

Linear Integer Arithmetic:

I LattE
I Barvinok
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Motivation

String manipulating programs are pervasive

I security critical functions,
I server side sanitization functions,
I databases,
I dynamic code generation.

We need model counting for strings in order to make quantitative
guarantees about these types of programs.

Software for string constraint model counting

I Automata-Based Model Counter (ABC) [Aydin, et. al. CAV 2015]
I String Model Counter (SMC) [Luu, et. al. PLDI 2014 ]
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Model Counting

Recall the classic (boolean) SAT problem

Given a formula φ from propositional logic, is it possible to assign all
variables the values T (true) or F (false) so that the formula is true?

Example:

φ = (x ∨ y) ∧ (¬x ∨ z) ∧ (z ∨ w) ∧ x ∧ (y ∨ v)

φ is satisfiable by setting

(x , y , z,w , v) = (T ,F ,T ,F ,T ).

A satisfying assignment is called a model for φ.
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Model Counting

The model counting problem

Given a formula φ over some theory (Boolean, LIA, Strings, . . . )

how many models are there for φ?

Difficulty of Model Counting

Model counting is “at least as hard” as satisfiability check.

|φ| > 0⇐⇒ φ is satisfiable
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Model Counting Boolean SAT
x y z w v F
F F F F F F
...

...
...

...
...

...

T F F T T F
T F T F F F
T F T F T T
T F T T F F
T F T T T T
T T F F F F
T T F F T F
T T F T F F
T T F T T F
T T T F F T
T T T F T T
T T T T F T
T T T T T T

φ = (x∨y)∧(¬x∨z)∧(z∨w)∧x∧(y∨v)

φ has 6 models.

Truth table method is θ(2n).

DPLL method is O(2n), but is faster
in practice.1

[1] Birnbaum, et. al. The good old Davis-Putnam procedure helps counting models. JAIR 1999.
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Model Counting Strings

A formula over the theory of strings can involve

I Word Equations: X ◦ U = Y ◦ Z
I Length Constraints: 4 < Length(X ) < 10
I Regular Language Membership: X ∈ (a|b)∗

I and more complex constraints: (X = substring(Y , i , j), . . . )
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Model Counting Strings

X ∈ (0|(1(01∗0)∗1))∗

Q: How many solutions for X?

A: Infinitely many!

Q: How many solutions for X of length k?

A counting sequence for language L encodes

ak = |{s : s ∈ L, len(s) = k}|

a0 = 1,a1 = 1,a2 = 1,a3 = 1,a4 = 3,a5 = 5, . . .

k X ak

0 ε 1
1 0 1
2 11 1
3 110 1
4 1001,1100,1111 3
5 10010,10101,11000,11011,11110 5
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Deterministic Finite Automata

X ∈ (0|(1(01∗0)∗1))∗

0 1 2
1 0

1
01

0

|{s : s ∈ L, len(s) = k}| ≡ |{π : π is accepting path of length k}|

String Counting ≡ Path Counting
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Deterministic Finite Automata

0 1 2
1 0

1
01

0

How to count paths of length k?

Dynamic Programming

s

s′s′
1

s′
2

s′
3

ak (s) =
∑
s′→s

ak−1(s′)

Initial Conditions

a0(0) = 1,a0(1) = 0,a0(2) = 0

System of Recurrences

a0(k) = a0(k − 1) + a1(k − 1)
a1(k) = a0(k − 1) + a2(k − 1)
a2(k) = a1(k − 1) + a2(k − 1)
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How to count paths of length k?

Matrix Exponentiation

System of Recurrences

a0(k) = a0(k − 1) + a1(k − 1)
a1(k) = a0(k − 1) + a2(k − 1)
a2(k) = a1(k − 1) + a2(k − 1)

a0(k)
a1(k)
a2(k)

 =

1 1 0
1 0 1
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a0(k − 1)
a1(k − 1)
a2(k − 1)



a0(k)
a1(k)
a2(k)

 =

1 1 0
1 0 1
0 1 1

k 1
0
0


ak = (Ak )0,F

a4 = (A4)0,0 = 3
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Generating functions are a way to compactly represent
(possibly infinite) sequences.

g(z) =
1

(1− z)3 =
∞∑

k=0

ak zk

g(z) = 1z0 + 3z1 + 6z2 + 10z3 + 15z4 + . . .

g(z) = a0z0 + a1z1 + a2z2 + a3z3 + a4z4 + . . .

Sequence element ak is the k th Taylor series coefficient of g(z).
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X ∈ (0|(1(01∗0)∗1))∗

A generating function for language L encodes

ak = |{s : s ∈ L, len(s) = k}|

g(z) =

1z0 + 1z1 + 1z2 + 1z3 + 3z4 + 5z5 + . . .

k X ak

0 ε 1
1 0 1
2 11 1
3 110 1
4 1001,1100,1111 3
5 10010,10101,11000,11011,11110 5
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Deterministic Finite Automata

0 1 2
1 0

1
01

0

How to count paths of length k?

Generating Functions

A =

1 1 0
1 0 1
0 1 1

 g(z) =
det(I − zA : i , j)

(−1)n det(I − zA)

g(z) =
1− z − z2

(z − 1) (2z2 + z − 1)

g(z) = 1z0 + 1z1 + 1z2 + 1z3 + 3z4 + 5z5 + . . .
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Good job, Will Hunting!!!
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Automata-Based Model Counter (ABC)

CAV 2015: Automata-Based Model Counting for String Constraints.
Abdulbaki Aydin, Lucas Bang, Tevfik Bultan:

String
Constraints ABC

Counting
Function

f (k)

String
Length, k

Number of
solutions of
length k

Idea: Convert string constraints to DFA. Count paths in DFA.
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Password Changing Policy

Constraint on NEW_P

(declare-fun NEW_P () String)

(not (contains (toLower NEW_P) "abc-16"))
(not (contains "abc-16" (toLower NEW_P)))
(not (contains (toLower NEW_P) "61-cba"))
(not (contains "61-cba" (toLower NEW_P)))

(check-sat)
(model-count)

27 / 45



Password Changing Policy

1

 [NUL-5], [7-@], `, [B-C], [b-c]
 [D-G], [d-g], [H-O], [h-o]

 [P-_], [p-253]

9

 6

10

 A, a

 [NUL-0], [2-5], [7-@], `, [B-C]
 [b-c], [D-G], [d-g], [H-O]

 [h-o], [P-_], [p-253]

 6

 A, a

21
 1

 [NUL-5], [7-@], `, C, c, [D-G]
 [d-g], [H-O], [h-o], [P-_]

 [p-253]

 6

 A, a

22

 B, b

 [NUL-,], [.-5], [7-@], `, [B-C]
 [b-c], [D-G], [d-g], [H-O]

 [h-o], [P-_], [p-253]

 6

 A, a

25

 -

 [NUL-5], [7-@], `, B, b, [D-G]
 [d-g], [H-O], [h-o], [P-_]

 [p-253]

 6

 A, a

26 C, c

 [NUL-5], [7-@], `, B, b, [D-G]
 [d-g], [H-O], [h-o], [P-_]

 [p-253]

 6

 A, a

29

 C, c

 [NUL-,], [.-5], [7-@], `, [B-C]
 [b-c], [D-G], [d-g], [H-O]

 [h-o], [P-_], [p-253]

 6

 A, a

30

 -

 [NUL-5], [7-@], `, C, c, [D-G]
 [d-g], [H-O], [h-o], [P-_]

 [p-253]

 6

 A, a

33

 B, b

 [NUL-0], [2-5], [7-@], `, [B-C]
 [b-c], [D-G], [d-g], [H-O]

 [h-o], [P-_], [p-253]

 6

 A, a

34

 1

 [NUL-5], [7-@], `, [B-C], [b-c]
 [D-G], [d-g], [H-O], [h-o]

 [P-_], [p-253]

 6

 [NUL-5], [7-@], `, [B-C], [b-c]
 [D-G], [d-g], [H-O], [h-o]

 [P-_], [p-253]

 A, a

0

 [NUL-,], [.-0], [2-5], [7-@]
 `, [D-G], [d-g], [H-O], [h-o]

 [P-_], [p-253]

2

 -

3

 1

4 6

5

 A, a

6

 B, b

7

 C, c

 [NUL-0], [2-5], [7-@], `, B
 b, [D-G], [d-g], [H-O], [h-o]

 [P-_], [p-253]

 6

 A, a

11

 1

12

 C, c

 [NUL-,], [.-5], [7-@], `, [B-C]
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Figure : Solution DFA for all possible values of NEWP.
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Figure : Transition matrix for DFA for all possible values of NEWP.
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Figure : Transition matrix for DFA for all possible values of NEWP.
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Password Changing Policy

Generating function which enumerates NEW_P:

g(z) =
8096z12 − 8128z11 + 32z10 + 16z7 − 16z6 − 256z2 + 257z − 1

194304z17 + 225920z16 + 241984z15 + . . .+ z5 − 6114z4 − 2280z3 − 247z2

g(z) = 247z2 + 65759z3 + 16842945z4 + 4311810213z5 + 1103823437965z6 + . . .

To answer our quantitative question:

I Brute force searching for password length = 6: 2566 = 248 passwords.
I If adversary knows old_p and the policy: 1103823437965 ≈ 240.0056 passwords.
I Reduces search space by about factor of 27.9944
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SMC Model Counting
PLDI 2014: A Model Counter For Constraints Over Unbounded
Strings. Luu, Shinde, Saxena, Demsky.

SMC Tool Online: https://github.com/loiluu/smc
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Idea: go directly from constraints to g(z) using transformations.

33 / 45



SMC Model Counting
PLDI 2014: A Model Counter For Constraints Over Unbounded
Strings. Luu, Shinde, Saxena, Demsky.

SMC Tool Online: https://github.com/loiluu/smc

String
Constraints SMC

Generating
Function,

g(z)

String
Length, k

Number of
strings of
length k

Idea: go directly from constraints to g(z) using transformations.

33 / 45



SMC Model Counting

For a regular expression constraint, generating function
can be derived recursively.

ε 7→ 1z0

c 7→ 1z1

A|B 7→ A(z) + B(z)
A ◦ B 7→ A(z)× B(z)
A∗ 7→ 1/(1− A(z))
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Other operations in SMC

Specialized transformations for other operations

contains(s1, s2) 7→ zn

(1−Mz)(zn+(1−Mz)c(z))

F1 ∨ F2 7→ [max(L1(z),L2(z)),min(U1(z) + U2(z),G(z))]

Also handle substring, length, negation, conjunction, . . . ,
with upper and lower bounds.
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Outline

I Motivation and Background
I Model Counting Boolean Formulas
I String Model Counting

I Automata-Based Methods
I Non-Automata-Based Method

I String Model Counting Benchmarks
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Experimental Comparison

Table : Log scaled comparison between SMC and ABC

bound SMC
lower bound

SMC
upper bound

ABC
count

nullhttpd 500 3752 3760 3760
ghttpd 620 4880 4896 4896
csplit 629 4852 4921 4921
grep 629 4676 4763 4763
wc 629 4281 4284 4281
obscure 6 0 3 2
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Experimental Comparison

JavaScript Benchmarks

I Kaluza benchmarks, extracted from JavaScript code via DSE,
[Saxena, SSP 2010]

I Small Constraints (19,731):
I ABC: 19,731 constraints, average 0.32 seconds per constraint
I SMC: 17,559 constraints, average 0.26 seconds per constraint.

I Big Constraints (1,587):
I ABC: 1,587 constraints, average 0.34 seconds per constraint
I SMC: 1,342 constraints, average 5.29 seconds per constraint
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ABC Bonus: Model Counting Linear Integer Arithmetic

What is this language?

X ∈ (0|(1(01∗0)∗1))∗

L(X ) = {s|s is a binary number divisible by 3}

0 1 2
1 0

1
01

0

Idea: DFA can represent (some) relations on sets of binary integers.
We can use similar techniques that we used for #String to solve
#LIA.
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Model Counting Linear Integer Arithmetic

Quantifier-Free Linear Integer Arithmetic (Z,+, <).

Constraints of the form:

Ax < B, x ∈ Zn

It is possible to represent the solutions to a set of LIA constraints as a
binary multi-track DFA.
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Binary Multi-track DFA
Solution DFA for LIA constraints.

I Read bits of x and y from most to least significant.

I Alphabet is a tuple of bits:
(

bx
by

)

Solution DFA for the constraint x > y .

= >

<

(
0
1

)
(
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)
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Solutions of length n ≡ solutions within bound 2n
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Model Counting Summary

Counting Techniques for Different Theories

I Boolean

I Truth Table (Brute Force)
I DPLL

I Strings
I DFA with Dynamic Programming, Matrix Multiplication, GFs
I Regular Expression with GFs

I Linear Integer Arithmetic
I Binary Multi-track DFA
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Related work on model counting

I Stanley. Enumerative Combinatorics Chapter 4. 2004.
I Sedgwick. Analytic Combinatorics Chapter 5: Generating Functions. 2009
I Biere. Handbook of Satisfiability. Chapter 20: Model Counting. 2009
I Pugh. Counting Solutions to Presburger Formulas: How and Why. 1994
I Parker. An Automata-Theoretic Algorithm for Counting Solutions to Presburger Formulas.

Compiler Construction 2004
I Boigelot. Counting the solutions of Presburger equations without enumerating them. TCS

2004.
I Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the

dimension is fixed. Mathematics of Operations Research 1994
I De Loerab. Effective lattice point counting in rational convex polytopes. JSC 2004
I Verdoolaege. Counting integer points in parametric polytopes using Barvinoks’s Rational

Functions. 2007
I Kopf Symbolic Polytopes for Quantitative Interpolation and Verification. CAV 2015
I Luu. A Model Counter For Constraints Over Unbounded Strings. PLDI 2014
I Ravikumara. Weak minimization of DFA - an algorithm and applications.Implementation and

Application of Automata 2004
I Chomsky. The Algebraic Theory of Context-Free Languages. 1963
I Phan. Model Counting Modulo Theories. PhD Thesis 2014.
I Birnbaum. The good old Davis-Putnam procedure helps counting models. JAIR 1999
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Thank you.
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