Information Leakage in Arbiter Protocols

Nestan Tsiskaridze, Lucas Bang, Joseph McMahan, Tevfik Bultan and Timothy Sherwood

University of California Santa Barbara
October 9, 2018

ATVA 2018: INTERNATIONAL SYMPOSIUM ON AUTOMATED TECHNOLOGY FOR
VERIFICATION AND ANALYSIS

Monday, Aug. 13, 1990

TIM And Bomb The Anchovies

Delivery people at various Domino's pizza outlets in and around Washington claim that they have learned
to anticipate big news baking at the White House or the Pentagon by the upsurge in takeout orders.
Phones usually start ringing some 72 hours before an official announcement. "We know," says one pizza
runner. "Absolutely. Pentagon orders doubled up the night before the Panama attack; same thing
happened before the Grenada invasion." Last Wednesday, he adds, "we got a lot of orders, starting
around midnight. We figured something was up." This time the big news arrived quickly: Irag's surprise

invasion of Kuwait.

Monday, Aug. 13, 1990

TIM And Bomb The Anchovies

Delivery people at various Domino's pizza outlets in and around Washington claim that they have learned
tojanticipate big news baking at the White House or the Pentagon by the upsurge in takeout orders.
Phones usually start ringing some 72 hours before an official announcement. "We know," says one pizza
runner. "Absolutely. Pentagon orders doubled up the night before the Panama attack; same thing
happened before the Grenada invasion." Last Wednesday, he adds, "we got a lot of orders, starting
around midnight. We figured something was up." This time the big news arrived quickly: Irag's surprise

invasion of Kuwait.

Monday, Aug. 13, 1990

TIM And Bomb The Anchovies

Delivery people at various Domino's pizza outlets in and around Washington claim that they have learned
tojanticipate big news baking at the White House or the Pentagon by the upsurge in takeout orders.
Phones usually start ringing some 72 hours before an official announcement. "We know," says one pizza
runner. "Absolutely.|Pentagon orders doubled up the night before the Panama attack;|same thing
happened|before the Grenada invasion.| Last Wednesday, he adds, "we got a lot of orders, starting
around midnight. We figured something was up." This time the big news arrived quickly: Irag's surprise

invasion of Kuwait.

Granada

w\/

- Does the information leak?

- How much information leaks?

- Can we always prevent information from crossing from
one domain to another?

- Can we identify and quantify the information leakage?

- Can we automate?

Priority Arbiter: process with the lowest ID gets access.

T

~_>

R6 R5 R4 R3 R2 R1

G1 G2 G3 G4 G5 G6

~>

Arbiter Protocols

Categories:

How to resolve concurrent requests?

Are the processes stateful/stateless?

A process is stateless if requests at each round are independent
from those of the previous rounds; Otherwise, a process is stateful.

Stateless Protocols Procedure PRIORITY

Input: R|[1..n] an array of requests
Output: G[1..n] an array of responses

LR &5 A —

2: pid < NULL

3: fori+1ton do

4: if R[i]] =T then
Select the Process 5. pid «— i

6 break

fi end if

8: end for

Stateful Protocols 9: if pid 7£ NULL then

A Grant the Access 10: Gpid] + T
11: end if

12: return GG
P

Deterministic >
PRIORITY Random

Stateless Protocols

Stateless Protocols Bt TG

Input: RJ[l..n| an array of requests
Output: G[1..n] an array of responses
1: G+ (L,...,1)

if ISRACE(R) then
pid < PICKRND(R)
else
pid < FINDREQ(R)
end if

Select the Process

Stateful Protocols 7. if pid 7& NULL then

i Grant the Access Glpid] < T
9: end if

=

10: return G

-

Deterministic > -
PRIORITY RANDOM Random

Stateless Protocols

Stateful Protocols

Stateful Protocols

A

ROUNDROBIN ¢

Update the Global Data

Select the Process

Grant the Access

Update the Global Data

Deterministic >

PRIORITY RANDOM

Stateless Protocols

>_

P
Random

Global: tkn

Procedure ROUNDROBIN

Input: RJ[l..n| an array of requests
Output: G[1..n] an array of responses

G+ (L,..., i by

if tkn =n+1 then
tkn <1
end if

pid < NULL
if R[tkn| then

pid < tkn
end if

9: if pid # NULL then
10: Gpid| < T
11: end if

12: thkn < tkn + 1

13: return GG

Stateful Protocols

Update the Global Data

Select the Process

Grant the Access

Stateful Protocols

4 Update the Global Data

ROUNDROBINSKIP @
ROUNDROBIN ¢

-

Deterministic > -
PRIORITY RANDOM Random

Stateless Protocols

Global: tkn

Procedure ROUNDROBINSKIP
Input: RJ[l..n| an array of requests

Output: G[1..n] an array of responses

: G+ (4,..., i by

1
2: if tkn =n+ 1 then
< tkn <1

4: end if

5: pid <~ FINDFIRST(R,tkn)

6: if pid # NULL then
i Glpid) <+ T

8: tkn < pid+ 1
9: end if

10: return G

Stateful Protocols

Update the Global Data

Stateful Protocols Select the Process
A

T Grant the Access

ROUNDROBINSKIP @
ROUNDROBIN ¢

Update the Global Data

Deterministic > -
PRIORITY RANDOM Random

Stateless Protocols

Global: W[l..n| an array of wait-times
Procedure LOTTERY

Input: RJ[l..n| an array of requests
Output: G[1..n] an array of responses

i
2
3

11
12:
e

14:
152
16:
L7
18:

/ /

for i1+ 1ton do

G+ (L,..., i by

if R[i] = T then
Wii] <+ WTi] + 1
else
Wi < 0
end if
end for
if ISRACE(R) then

pid < PICKRND(W)
else

pid < FINDREQ(R)
end if

if pid # NULL then
Glpid] < T
W pid] < 0

end if

return G

Stateful Protocols

Update the Global Data

Stateful Protocols Select the Process
A

FCFS

T Grant the Access

ROUNDROBINSKIP @
ROUNDROBIN ¢

Update the Global Data

Deterministic > -
PRIORITY RANDOM Random

Stateless Protocols

Global: W[l..n| an array of wait-times
Procedure FCF'S

Input: RJ[l..n| an array of requests
Output: G[1..n] an array of responses

i
2
3

11
12:
e

14:
152
16:
L7
18:

/ /

for i1+ 1ton do

G+ (L,..., i by

if R[i] = T then
Wii] <+ WTi] + 1
else
Wi < 0
end if
end for
if ISRACE(R) then

ptd <—PICKONE(ALLMAX(W))
else

pid < FINDREQ(R)
end if

if pid # NULL then
Glpid] < T
W pid] < 0

end if

return G

Stateful Protocols

Update the Global Data

Stateful Protocols Select the Process
A
LONGESTIDLE LoNGESTIDLE_R
FCFS ® FCFS_R
— Grant the Access

ROUNDROBINSKIP @
ROUNDROBIN ¢

Update the Global Data

Deterministic > -
PRIORITY RANDOM Random

Stateless Protocols

Global: [I[1..n] an array of idle-times
Procedure LONGESTIDLE

Input: RJ[l..n| an array of requests
Output: G[1..n] an array of responses

i
2;
3

4:
5%
6: end for

=

ol = e

/ /

for : < 1ton do
if R[] = 1 then
I « Ili]+1
end if

G+ (L,..., I

if ISRACE(R) then
pid <~PICKONE(ALLMAX(T))
else

pid < FINDREQ(R)

- end if

. if pid # NULL then
13:
|14k

15
16:

Glpid) < T
Ipid] < O
end if

return G

Information Leakage in Arbiter Protocols

Arbiter Protocol Model

H — asecret/private input, high-security input: Victim’s Requests {R1, R2, ..., Rn};
L. — a public input, the low security input: Adversary’s Requests: {R1, R2, ..., Rn};

() — a output observation: Adversary’s Access Grants: {G1, G2, ..., Gn};

Before invoking the system: the adversary has some initial uncertainty about the value of e

After observing O : some amount of information is leaked,
the adversary's uncertainty about is refiliced.

Information Entropy as a measurement of uncertainty

Shannon Entropy

Quantifies Information Gain:

H(H | O, 1)

High-security Secret: Observations: Low-security input:

Victim’s Request Adversary’s Access Adversary’s Request
Grant

Shannon Entropy

Hm|am:ZﬂMOZHM%W%men
w.l h |

Expected maximal amount of information leaked:

Z(H,0,L) = max(HjnslH | 1) = HenH | O1))
[

1
Hinit(H | 1) = Y P(h|1)log, PR TD
h
1

Hpn(H | 0,0) = 3 P D)) Ph]w,1)logy prap
w h ’

Information Entropy as a measurement of uncertainty

Adversary’s
QIF Analysis Information Gain

>
H

- How do we capture all behaviors of a protocol?

Symbolic Execution

Extracts path constraints from a system by executing it on symbolic inputs, as opposed to
concrete inputs.

We adopt and extend symbolic execution techniques to automatically extract
constraints that relate secret values with adversary’s observations.

Symbolic Execution

¢(H, L) — a path constraint from a traditional Symbolic Execution tool.

Extend ¢(H, L) with an event constraint:

- How do we handle random components in symbolic analysis?

Random in Symbolic Analysis

R — arandom variable;

(R1,...,R;)— the domainof R.
W = (Wy,...,W,) — probability weights for R, with W; € ZT.

Domain Interval

1 Wh Wy Wi W,
| U U U U | | 1
D(W1) D(Ws) D(W;) D(Wy
(W |
1—1 7

Random in Symbolic Analysis

sym_R — a fresh symbolic integer variable;

PickRND() — Selects a value from a domain with a weighted-random distribution;
Simulates the desired random generator behavior;
Extends path constraints to reflect the relation between sym_R and R.

. for 1d <+ 1 tod <n do

if Wid| > 0 and sym_R € D(Wid]) then
return d

end if

end for
return NULL

- How do we handle random components in symbolic analysis?

- How do we capture all behaviors of a protocol?

Arbiter . - Characteristic
Protocol xfen € . Constraints
> Symbolic Execution
PICKRND() C(H, 0, L)

Adversary’s
QIF Analysis Information Gain

>
H

- How do we compute the probabilities?

Model Counting

cases adversary observes w
after requesting [

P(wl|l) =
Total # cases when
adversary requests [
cases the secretis h
when adversary observes w
after requesting [
P(h | w,l) = questine

Total # cases when
adversary observes w
after requesting [

Model Counting: Range Constraints RC

Grammar
€ - €EANC|R B - Boolean variables
R - B=T|B=L1|ZE€]|a,b] 7 - Integer variables

Model Counter

1: for each Cy4 in C do

2 m < #FREEVARS(Cy, Py, Pa)
2 s+ 2™

4: for each (r € [a,b]) in I do
b: s+—(b—a+1)xs

6 end for
7: end for

- How do we compute the probabilities?

Arbiter Characteristic
Extended : Model
Protocol . _ Constraints _
Symbolic Execution - Counting
P1ck RND() C(H, 0, L) RC
Probabilities
P(wll)
P(h | w,l) Adversary’s
QIF Analysis Information Gain

>
H

Experiments

* Arbiter Protocols (in Java): Stateful Protocols
A
LONGESTIDLE LoNGESTIDLE_R
FCFS FCFS_R
&2
ROUNDROBINSKIP @ LOTTERY
RouNnDROBIN &
[
Deterministic [z) Random

PRIORITY RANDOM

Stateless Protocols

* Processes: Victim Process, Adversary Process, Benign Process.

e Rounds: 1to6.

We extended SPF (Symbolic Java PathFinder). Implemented pickRnp() andRC -

RC/IEC ~1.4x — 2,647x faster.

Max Leakage (bits) and Execution Time (seconds) Avg. speedup: 250x (excluding £C time outs).

1 Round 2 Rounds 3 Rounds 4 Rounds 5 Rounds 6 Rounds
Protocol mazx|RC|EC max|RC| EC |maz|RC| EC |maz|RC| EC |max|RC| EC |maz| RC |EC
bit |sec|sec| bit |sec| sec| bit |sec| sec | bit |sec| sec | bit | sec| sec | bit sec |sec
PRIORITY 1.0010.110.3] 2.00{ 0.2 0.7]3.00|0.2] 10.2] 4.00}0.3]346.4] 5.00(0.5 6.00 1.5
ROUNDROBIN 0.00[0.2][0.4] 0.00] 0.1 0.3] 0.00]0.2] 1.2]0.00}0.3] 10.3] 0.00] 0.3 0.00 0.8
RouNnDROBINSKIP | 1.00{0.2(0.3] 1.16|0.2| 0.6] 1.57|0.1] 10.3] 1.97}0.3|337.9] 2.32| 0.5 2071 1.5
FCF'S 1.0010.2]0.3] 1.27(0.2] 1.2] 1.86 p=m——— 2.16| 0.7 2ZL 4.8 302 44.1
LONGESTIDLE 1.00{0.110.3] 1.55] 0.2 1.0] 2.10 pun=uE———— 2.66| 0.8 328 8.1 378 487
FCFS_R 0.13[0.1]3.2] 0.27]0.3|11.5] 0.45 054391 0.64| 4.9 0.83|74.3 1.02(1121.1
LoNGESTIDLE_R 0.05(0.1{2.7] 0.21]0.1]10.0] 0.40}0.4{241.8] 0.58(1.9 0.76119.5 0.92]| 200.3
LOTTERY 0.05]0.2]2.7] 0.09(0.2113.2] 0.13 053—997 0.17]4.2 0.21165.2 0.25]| 981.2
RANDOM 0.05[0.1]4.8]0.10] 0.2[10.6] 0.15] 0.5]372.2] 0.20| 4.2 0.24166.2 0.29] 983.1
PRIORITY_S 1.0010.1]0.3] 2.00{ 0.2 0.9] 3.00| 0.3 18.9] 4.00(0.4 5.00] 0.8 6.00 4.4
ROUNDROBIN_S 0.0010.1]0.3] 0.00{ 0.2 0.5] 0.00[0.3[5.210.00({0.3[260.8] 0.00| 0.4 0.00 1.2
RouNDROBINSKIP_S| 1.00| 0.2(0.4] 1.07]10.1| 1.1] 1.33]10.2] 17.6] 1.53|0.4]|979.5] 1.64| 0.8 1.81 3.2
FCFS_S 1.00/10.1]10.4] 1.16{/ 0.1 1.0] 1.41}0.3| 32.4] 1.67(0.4 1.83| 1.2 2.06 6.4
LONGESTIDLE_S 1.00{0.210.4] 1.55| 0.2| 1.2] 2.14 pESuE——. 2.78| 0.4 347 1.3 4.20 6.6
FCFS_-RS 0.13]0.2[4.3]1 0.25[0.1]17.3] 0.4110.41283:2] 0.55| 1.3 0.70] 9.5 0.84| 79.2
LoNGESTIDLE_RS 0.05[10.2]14.1] 0.14]0.2]15.7] 0.31}0.3|184.0] 0.35(0.6 0.43| 3.1 0.48| 20.5
LOTTERY_S 0.05(0.214.6] 0.06] 0.3(22.1] 0.06[0.41312.6] 0.07| 1.2 0.08110.2 0.09| 88.2
RANDOM_S 0.05{0.1(2.9] 0.06] 0.2]18.8] 0.080.3(290.8] 0.09(1.3 0.10]10.2 0.11] 8&88.9

RC — with the Range-Constraint Counting, £C — with the Enumerative Counting methods;
Timeout — 20 minutes (1200 s);
(S) — stateful processes; (R) — resolving wait-time and idle-time concurrences randomly.

Worst-case Leakage (bits) for each protocol as a function of the round number.

. | Stateless Processes Stateful Processes 9
} PRIORITY < PRIORITY
' ROUNDROBIN RoOUNDROBIN
‘ ROUNDROBINSKIP ROUNDROBINSKIP
: FCFS ¥ ECES
51 LONGESTIDLE ~+ LONGESTIDLE B>
@ rcrsr FCFS_R
LONGESTIDLE_R LONGESTIDLE_R
LoTTERY 4 LOTTERY
>~ RANDOM A Ranpom A
4 b
2 +
=
)
(®)]
g3 B
©
L "y ©
x
©
= @
+
2 B i
Y
¥
@
Y
¥
1 + 8
®
(4]
n
o >
o) { > '
of @ 4 é & a 4
1 2 3 4 5 6

Round

Leakage (in bits) for each protocol per rounds 1-6
Stateless Processes

. Ll [JPrIORITY NFCFs B FCFS_R BLoTTERY
= ROUNDROBIN /JLoNGESTIDLE B LonGESTIDLE_R MRANDOM
4. il [JROUNDROBINSKIP
V)
= u
o
2 -
1A -
0
] Stateful Processes
5 1 -
4 - o
Bs1--H
o

2.3) (1,3) 2.1) (3.2) (3,1)

Leakage for each (victim; adversary) process pair.

Cumulative leakage is shown for 6 rounds.

Summary

A new approach for automatically identifying and quantifying the information leakage in
protocols that arbitrate utilization of shared resources between processes.

Provides protocol designers and users a new dimension in assessment and comparison of
protocols in terms of the amount of information leaked over time.

Arbiter Characteristic
Extended : Model
Protocol _ . Constraints .
> Symbolic Execution B> Counting
PICKRND() C(H,0, L) RC
Probabilities
P(wll)
P(h | w,l) Adversary’s
QIF Analysis Information Gain
s>

H

Summary
A new approach for automatically identifying and quantifying the information leakage in
protocols that arbitrate utilization of shared resources between processes.

Provides protocol designers and users a new dimension in assessment and comparison of
protocols in terms of the amount of information leaked over time.

The novel QIF analysis technique:

 Combines and extends symbolic execution and model counting techniques:

- We extend symbolic execution to extract constraints characterizing relationships between
the secret and the adversary-observable events.

- With model counting constraint solvers, we quantify the amount of information leaked,
in terms of entropy, by observable events:

A novel, efficient and exact model counting technique for a class of constraints extracted
during QIF analysis of arbiter protocols.

e Supports randomized protocols.

