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Software Verification

Goal: Given a program, determine if executions satisfy
some property.
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Software verification problem is undecidable!
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Software Verification Techniques

Programs can have infinitely many behaviors.
Even simple programs can have exponentially many behaviors.

Feasible Software verification techniques must deal with state space
explosion.

6/66



Work on Software Verification

Geldenhuys. Probabilistic symbolic execution. ISSTA 2012

Bultan. Symbolic Model Checking of Infinite State Systems Using Presburger Arithmetic.
CAV 1997

Yu. Patching Vulnerabilities with Sanitization Synthesis. ICSE 2011

Ball. Automatically Validating Temporal Safety Properties of Interfaces. SPIN 2001
Biere. Symbolic Model Checking without BDDs. TACAS 1999

Visser. Model Checking Programs. ASE 2003.

Burch. Symbolic Model Checking: 10?° States and Beyond, LICS 1990

Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans. Computers.
1986

Cadar. Symbolic execution for software testing in practice: preliminary assessment. ICSE
2011

» Cadar. Symbolic Execution for Software Testing: Three Decades Later. CACM 2013

> Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. POPL 1977.

» Cousot. Systematic Design of Program Analysis Frameworks. POPL 1979
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Software Verification Tools

A small sample:

VVyVVYVYYVYYVYY

Edmund Clarke. A Tool for Checking ANSI-C Programs. TACAS 2005.
Holzmann. The Model Checker SPIN. IEEE Trans. Software Eng 1997.

Musuvathi. CMC: A pragmatic approach to model checking real code. OSDI 2002.

Yang. Using Model Checking to Find Serious File System Errors. OSDI 2004
Ball. A decade of software model checking with SLAM. CACM 2011.
Godefroid, et al. DART: Directed Automated Random Testing. PLDI 2005.
Sen. CUTE: A Concolic Unit Testing Engine for C. ESEC/FSE 2005.

SAGE: Whitebox Fuzzing for Security Testing. CACM 2012.
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Symbolic Execution and Path Constraints

Basic Idea

» Represent program variables as symbolic variables:
> Xq P—)X1,X2i—)X2,...,an—>Xn

» Program executions are described by formulas over symbolic
variables.

> f(X1,X2,...,Xn)
» Path Constraints
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2. if(x > vy)

3. =u + x

4, if(u < 0)

5. assert false
6. exit
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Probabilistic Symbolic Execution

Question
How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Path Constraint Probability
Let |PC;| be the number of solutions to PC;.

Let | D| be the size of the input domain D.
Assuming D is uniformly distributed:

|PCil
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Probabilistic Symbolic Execution

i 0 1 2 3 4
PC; | Pl0]# Gl0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[O]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI[3] = G[3]
|PCil
Pi

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

|PCi|

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

|PCi|

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC[ | 72722

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128
: 172

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128
: 172

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128
: 172

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | PNl = GI] | Pl =G[] | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

|PCi| | 128 ?2?7???
- 1/2

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | PNl = GI] | Pl =G[] | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC | 128 64
. 172 29777

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | PNl = GI] | Pl =G[] | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC | 128 64
: 172 174

15/66



Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC | 128 64
: 172 174

15/66



Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1 2 3 4
PC; | P[0] # G[0] | P[0] = G[0] | P[] = GI[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32
pi 1/2 1/4 178
|PCi|
D]

15/66




Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1

2 3 4
PC; | P[0] # G[0] | P[0] = G[0] | P[] = GI[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P[2] # G[2] | P[2] = G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32 16
Pi 1/2 1/4 1/8 1/16
|PCi|

15/66




Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1

2 3 4
PCi | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32 16 16
pi 172 1/4 178 1716 1716
|PC;|

15/66




Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1

2 3 4
PCi | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32 16 16
pi 172 1/4 178 1716 1716
|PC;|

15/66




Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

A measure of program vulnerability

i 0 1 2 3 4
PCi | Pl0] # G[0] | P[0O] = G[0] | P[O] = GI[0] | P[O] = GI[0] | P[O] = G[O]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
|PCi| | 128 64 32 16 16
pi 172 1/4 178 1716 1716
|PC;|
|D|

Probability that an adversary can guess a prefix of length i in 1 guess is given by p;.
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Satisfiability Modulo Theories (SMT) Solvers

SMT solvers determine the satisfiability of formulas from
combinations of theories including:

» Linear Integer Arithmetic (LIA)
» Strings
» Bitvectors
> Arrays
» Uninterpreted Functions

Existing SMT solvers include: Z3, CVC4, MathSAT, . ..
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Work in SMT Solvers
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Procedures for a Logic of Equality with Uninterpreted Functions. ATRM 1999.

Davis. A Computing Procedure for Quantification Theory. JACM 1960.
Davis. A Machine Program for Theorem-Proving. CACM 1962.
Kroening. Decision Procedures - an algorithmic point of view. TCS 2008
Deters. A tour of CVC4: How it works, and how to use it. FMCAD 2014.
Barrett. CVC4. CAV 2011

De Moura. Z3: an efficient SMT solver. TACAS 2008
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Satisfiability Modulo Theories (SMT) Solvers

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

A decision procedure for satisfiability of Boolean formulas in
conjunctive normal form (CNF-SAT).
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Satisfiability Modulo Theories (SMT) Solvers

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

A decision procedure for satisfiability of Boolean formulas in
conjunctive normal form (CNF-SAT).

This is the core algorithm used in SMT solvers.
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end
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Satisfiability Modulo Theories (SMT) Solvers

DPLL uses Unit Propagation.

p={xVy-xvz,zvw,x,yVvv}
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Satisfiability Modulo Theories (SMT) Solvers

DPLL uses Unit Propagation.

p={xVy-xvz,zvw,x,yVvv}

' ={z,x,yVvv}
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DPLL Execution Example

{z,x,y Vv v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/N

z—F z—T

/ \

UNSAT {F,T,yvv} (T, T,yvv}

/ N\

y—F y—T

/ \

{T,T,Fvv} {T, T, Tvv} SAT

/ N\

v F ve T

/ N\

UNSAT {T,T,FVF} {T,T,FVv T} SAT

Result: ¢ is satisfiable.
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Software Verification With Symbolic Execution

Symbolic Execution
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Software Verification With Symbolic Execution

Symbolic Execution

» Summarizes program executions with path constraints.
» Relies on efficient solution of PCs - use SMT solvers.
» Warning: very effective, but unsound and can be expensive.

Variants of Symbolic Execution

» Standard

> Cadar. Symbolic execution for software testing in practice: preliminary assessment.
ICSE 2011
> Cadar. Symbolic Execution for Software Testing: Three Decades Later. CACM 2013

» Probabilistic
> Geldenhuys. Probabilistic symbolic execution. ISSTA 2012
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Overview

Symbolic

Path Co

nstraints

Model
Counting

Probability
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Channel Vulnerability

Ana
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Outline

Side Channel Analysis
Background and Information Theory
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What is a side channel?

How’s the weather?

Direct Channel: Go outside and look up.

But, I'm too busy working on my MAE.

Side Channel: Did Bo ride his bike today?

Learn some information through an indirect observation.

Observe Bo instead of the weather.
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Side Channel Analysis

As a software verification problem
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Side Channel Analysis

As a software verification problem

Verify that a program does not leak “too much” confidential
information to an adversary who can observe:

» Computation time
» Power usage

» Memory allocations
» Network packet size
» Keystroke time
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Side Channel Analysis
First considered at the hardware level.

int modPow (int num, int privatekey, int publickey)
int s = 1, y = num, result = 0;
while (privatekey > 0)

[

if (privatekey % 2 == 1)
)

% publickey;

result = (s *x y
else
result = s;
s = (result x result) % publickey;

privatekey /= 2;
return result;
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Side Channel Analysis
First considered at the hardware level.

int modPow (int num, int privatekey, int publickey)

int s = 1, y = num, result = 0;
while (privatekey > 0)
if (privatekey % 2 == 1)
result = (s * y) % publickey;
else
result = s;
s = (result x result) % publickey;

privatekey /= 2;
return result;

sesliefisononienoniialie

000 1 i1 0000 9 000 91 1 0
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Side Channel Analysis
A lot of research interest

> Geoffrey Smith. On the Foundations of Quantitative Information Flow. FOSSACS 2009
Pasquale Malacaria. Assessing security threats of looping constructs. POPL 2007

David Clark. A static analysis for quantifying information flow in a simple imperative
language. JCS (2007)

Jonathan Heusser. Quantifying information leaks in software. ACSAC 2010: 261-269
Quoc-Sang Phan. Symbolic quantitative information flow. ACM SIGSOFT SEN 2012
Quoc-Sang Phan. Quantifying information leaks using reliability analysis. SPIN 2014
Stephen McCamant. QIF as network flow capacity. PLDI 2008

Stephen McCamant. QIF tracking for C and related languages. MIT CSAIL 2006

Michael Backes. Automatic Discovery and Quantification of Information Leaks. SSP 2009

Shuo Chen. Side-Channel Leaks in Web Applications: A Reality Today, a Challenge
Tomorrow. IEEE SSP 2010

Goran Doychev. CacheAudit: A Tool for the Static Analysis of Cache Side Channels.
USENIX Security 2013

> Boris Kopf. Automatically deriving information-theoretic bounds for adaptive side-channel
attacks. JCS 2011

» Dawn Xiaodong Song. Timing analysis of keystrokes and timing attacks on SSH. USENIX
Security SSYM 2001

» Thomas S. Messerges. Power Analysis Attacks of Modular Exponentiation in Smartcards,
CHES 2002

VVyVYyVYYVYYVYY vy
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Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> Z ~ U(min, max)
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Then there exists a function f : Z — O such that
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Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> 7 ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on Z
> Iy ~ biff f(h) = f(k)

Example: C outputs last 4 digits of CC#

» f(n) =n mod 10000
» f(0000 0000 0000 6789) = 6789 = f(1111 1111 1111 6789)
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Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> 7 ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on 7
> Iy ~ biff f(h) = f(k)
Example: C outputs last 4 digits of CC#

» f(n) =n mod 10000
» f(0000 0000 0000 6789) = 6789 = f(1111 1111 1111 6789)
» 0000 0000 0000 6789 ~ 1111 1111 1111 6789
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Information Gain

Adversarial Model
A malicious adversary can see the observables, O.

This tells adversary which equivalence class / belonged to.

That is, the adversary gains information about what the input was.
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Information Gain

Adversarial Model
A malicious adversary can see the observables, O.

This tells adversary which equivalence class / belonged to.

That is, the adversary gains information about what the input was.

How much can the adversary learn?

Quantify using information theory.

31/66



Information Theory
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Information Theory

“A Theory of Communication”. Bell System Technical Journal, 1948.
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Information Theory

“A Theory of Communication”. Bell System Technical Journal, 1948.

1
H= Zpiloga
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Information Theory Intuition
Logarithm gives the necessary number of bits

S=1{0,1,2,3,...,254,255}
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Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

How many bits needed to distinguish S;, S; C S§?

Iogz35—26:I098:3
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Information Entropy, H =" pi |Og%,, — /5 ['09 ,%]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain =1, Psun = 0 H=0

Costa Rica Weather, Coin Flip
prain:%nOsun:% H=1

Santa Barbara Weather, Almost Always Beautiful!
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Information Theory Intuition

Information Entropy, H =" pi |Og%,, — /5 ['09 ,%]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain =1, Psun = 0 H=0

Costa Rica Weather, Coin Flip
prain:%nOsun:% H=1

Santa Barbara Weather, Almost Always Beautiful!
Prain = 11_07psun = 1i H = 0.4960
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Outline

Side Channel Analysis

Via Probabalistic Symbolic Execution
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Software Side Channel Analysis

High Level Idea:

» Define symbolic execution observation model (0;):
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Software Side Channel Analysis

High Level Idea:

» Define symbolic execution observation model (0;):

» Execution time — number of instructions (lines of code) executed.
» Memory — number of malloc, bytes written to file, ...

» Keep track of observations o; during PSE.
» Quantify information gain: H = >_ p;log é
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bool checkPIN (guess|
for(i =0; 1 < 4; 1
f (guess[i] PIN[
return false
return true

P: PIN, G: guess

o; = lines of code

’-
‘-
‘T
’-

P[0] = G[0]
P[] = @G[1]

P[2] = G[2]
PI3] = GI3]

o, =10

0 =3

P[O] = G[o]
PI1] # G[1]

01

o
N

=5

S
N OO
N

e
Y FoYoYnYo)
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i 0 1 2 3 4
PC; | PJ0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = GIO]
P[] # G[1] | P[1]1=G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
return | false false false false true
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i 0 1 2 3 4
PCi P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = G[0] | PIO] = G[0]
Pl # G | POl =aG[1] | P[1]=G[1] | P[1] = G[1]
Pl2] # G[2] | P[2] = G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
return | false false false false true
[PCi| | 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o; 3 5 7 9 10

H:Zp,-log%:1.8750

A measure of program vulnerability

H = expected amount of information that an adversary can gain in 1 guess.
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Side Channel Analysis

A more secure 4 digit PIN verification function:

public verifyPassword (guess|[])
matched = true
for (int i = 0; 1 < 4; 1i++)
if (guess[i] !'= PIN[1i])
matched = false
else

matched matched

return matched
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Side Channel Analysis

A more secure 4 digit PIN verification function:

public verifyPassword (guess|[])
matched = true
for (int i = 0; 1 < 4; 1i++)
if (guess[i] !'= PIN[1i])
matched = false
else
matched

matched
return matched

Only 2 oservables: oy = perfect match, oy = not perfect match.
p(oo) = 1/16,p(01) = 15/16
Hsecure = 033729 < Hjnsecure = 18750
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Side Channel Analysis

Summary

» Observe non-functional aspects of computatation to learn
information.

» Probabalistic symbolic execution provides p;, o;
» Quantify information gain: H = >_ p;log é
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Side Channel Analysis

Summary

» Observe non-functional aspects of computatation to learn
information.

» Probabalistic symbolic execution provides p;, o;
» Quantify information gain: H = >_ p;log é

Remaining issues
» How to determine the number of solutions to path constraints?

» Path constraints for real programs could involve boolean
formulas, strings, numeric constraints.
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Model Counting

Recall the classic (boolean) SAT problem

Given a formula ¢ from propositional logic, is it possible to assign all
variables the values T (true) or F (false) so that the formula is true?
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Given a formula ¢ from propositional logic, is it possible to assign all
variables the values T (true) or F (false) so that the formula is true?

Example:

d=XVY)AN(=XxVZ)A(ZVW)AXA(YyVV)

¢ is satisfiable by setting
(y,z,w,v)=(T,F,T,F,T).

A satisfying assignment is called a model for ¢.
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Model Counting

The model counting problem

Given a formula ¢ over some theory (Boolean, LIA, Strings, . ..)

how many models are there for ¢?
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Model Counting

The model counting problem

Given a formula ¢ over some theory (Boolean, LIA, Strings, ...)

how many models are there for ¢?

Difficulty of Model Counting

Model counting is “at least as hard” than satisfiability check.

|p| > 0 < ¢ is satisfiable
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Work on Model Counting
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Model Counting Boolean SAT
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Model Counting Boolean SAT

¢ has 6 models.
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Model Counting Boolean SAT

Truth table method is 6(27).

¢ has 6 models.
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Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, )

Input : CNF formula ¢ over n variables;
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return frue

x < SelectBranchVariable(¢)

return DPLL(g[x — frue], ) vV DPLL(g[x — true], )
end
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Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return 0

if all clauses of ¢ satisfied then return 2!

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue],t — 1) + DPLL(¢[x — true],t — 1)
end
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Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

/ \
x— F x—T
/ N
0 {z,F,yvv}it=4 {z, T,yvvit=4
/ \
z— F z— T
/ \
0 {F,T,yvv}t=3 {T,T,yvv}t=3
RN
y—F y—T

0 {7, T,FVF}t=1 ol —o {T, T, FVT}t=1

Result: 0 + 0+ 0+ 2 + 4 = 6 models
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Model Counting for Other Theories

Generating functions are a way to compactly represent
(possibly infinite) sequences.

9(2) = (1_2)3 Zakz

9(2) =12° + 32" + 622 + 102% + 152* + . ..

g(z) = aOZ0 + ay Z' aF 8222 + 8323 + a4Z4 + ...
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Outline

Model Counting

Strings
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Model Counting Strings

A formula over the theory of strings can involve
» Word Equations: XoU=YoZ
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Regular Expressions

X € (0[(1(0170)*1))*
Q: How many solutions for X?
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Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|
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Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes

ax=|{s:se L,len(s) = k}

9(z) =12 +12' +12°

k X ak
0 € 1
1 0 1
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Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

9(2) =122 +12' + 122 +12°
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3 110 1

52/66



Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

9(2) =120 +12' + 122 +123 + 324

k X ak
0 € 1
1 0 1
2 11 1
3 110 1
4 1001,1100,1111 3
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Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

9(2) =122 +12' +122 +12° + 32* +52° + ...

k X ak
0 € 1
1 0 1
2 11 1
3 110 1
4 1001,1100,1111 3
5 10010,10101,11000,11011,11110 5
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Regular Expressions

For a regular expression constraint, GF can be derived
recursively.
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Regular Expressions

For a regular expression constraint, GF can be derived
recursively.

€ — 120
c — 1z
AB — A(z)+ B(2)
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Regular Expressions

For a regular expression constraint, GF can be derived

recursively.

AB
AoB

L L& &

120
12!
A(2) + B(2)
A(z) x B(2)

53/66



Regular Expressions

For a regular expression constraint, GF can be derived

recursively.

AB
AoB
A*

L&
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Regular Expressions

X e (0|(1(0170)*1))"
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Deterministic Finite Automata

X € (0](1(01*0)*1))*

1 0
Soss oo

{s:s e L, len(s) = k}| = |{r : w is accepting path of length k}|

String counting = path counting
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Model Counting Linear Integer Arithmetic

What is this language?

X € (0](1(01*0)*1))*

L(X) = {s|s is a binary number divisible by 3}

1 0
QB T TED

Idea: DFA can represent (some) relations on sets of binary integers.
We can use similar techniques that we used for #String to solve
#LIA.
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Model Counting Linear Integer Arithmetic

Quantifier-Free Linear Integer Arithmetic (Z, +, <).
Constraints of the form:

Ax<B,xeZ

It is possible to represent the solutions to a set of LIA constraints as a
binary multi-track DFA.
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Binary Multi-track DFA
Solution DFA for LIA constraints.
» Read bits of x and y from most to least significant.

» Alphabet is a tuple of bits: (2X>
Yy

Solution DFA for the constraint x > y.

@) () 6)- ()

Solutions of length n = solutions within bound 2"
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Integer Grid Points Inside a Polytope, Z" N P

» Barvinok Algorithm
» LattE Integrale
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Model Counting Summary

Counting Techniques for Different Theories

» Boolean

» Truth Table (Brute Force)

» DPLL
» Strings

» Regular Expression with GFs

» DFA with Dynamic Programming, Matrix Multiplication, GFs
» Linear Integer Arithmetic

» Binary Multi-track DFA
» Polytope Methods
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My Recent Research

v

CAV 2015: “Automata-based model counting for strings”.

FSE 2015: “Automatically computing path complexity of
programs”.

Internship Summer 2015 Carnegie: Mellon University / NASA

> Integration of string model counter with Java Symbolic Path
Finder(SPF)

2015-2016: Side channel analysis using SPF.

» FSE 2016: “Side channel analysis of segmented oracles.”
(Submitted)

v

v

v
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Questions?

Thank you.
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