Automated Quantification of Software
Side-Channel Vulnerabilities

Lucas Bang
Committee: Tevfik Bultan (Chair), Ben Hardekopf,
Omer Egecioglu

Department of Computer Science
University of California, Santa Barbara

14 April 2016

1/66

Overview

Overview

Program

Overview

Program Symbolic
Execution

Overview

Program —— |

Path Co

Symbolic
Execution

nstraints

Model
Counter

Overview

Program Symbolic
Execution

Path Constraints

Model
Counter

Probability Distribution

Side
Channel

Analysis

Overview

Program Symbolic
Execution

Path Constraints

Model
Counter

Probability Distribution

Side
Channel

Analysis

Program
Vulnerability
Quantification

2/66

Outline

Symbolic Execution
Software Verification
Symbolic Execution
Probabilistic Symbolic Execution
SMT Solvers

Side Channel Analysis
Background and Information Theory
Via Probabalistic Symbolic Execution

Model Counting
Boolean Logic
Strings
Linear Ineger Arithmetic

3/66

Outline

Symbolic Execution
Software Verification

4/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

5/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

» Never divide by 0

5/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

» Never divide by 0
» Never throws array out of bounds exception

5/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

» Never divide by 0
» Never throws array out of bounds exception
» Never dereferences a null pointer

5/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

Never divide by 0

Never throws array out of bounds exception
Never dereferences a null pointer

Does not leak too much confidential information

vV V. Vv VY

5/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

Never divide by 0

Never throws array out of bounds exception
Never dereferences a null pointer

Does not leak too much confidential information
Halts on all inputs

vV vV.v v Yy

5/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

Never divide by 0

Never throws array out of bounds exception
Never dereferences a null pointer

Does not leak too much confidential information
Halts on all inputs

vV vV.v v Yy

5/66

Software Verification

Goal: Given a program, determine if executions satisfy
some property.

Never divide by 0

Never throws array out of bounds exception
Never dereferences a null pointer

Does not leak too much confidential information
Halts on all inputs

vV vV.v v Yy

Software verification problem is undecidable!

5/66

Software Verification Techniques

6/66

Software Verification Techniques

Programs can have infinitely many behaviors.

6/66

Software Verification Techniques

Programs can have infinitely many behaviors.

Even simple programs can have exponentially many behaviors.

6/66

Software Verification Techniques

Programs can have infinitely many behaviors.
Even simple programs can have exponentially many behaviors.

Feasible Software verification techniques must deal with state space
explosion.

6/66

Work on Software Verification

Geldenhuys. Probabilistic symbolic execution. ISSTA 2012

Bultan. Symbolic Model Checking of Infinite State Systems Using Presburger Arithmetic.
CAV 1997

Yu. Patching Vulnerabilities with Sanitization Synthesis. ICSE 2011

Ball. Automatically Validating Temporal Safety Properties of Interfaces. SPIN 2001
Biere. Symbolic Model Checking without BDDs. TACAS 1999

Visser. Model Checking Programs. ASE 2003.

Burch. Symbolic Model Checking: 10?° States and Beyond, LICS 1990

Bryant, Graph-Based Algorithms for Boolean Function Manipulation, IEEE Trans. Computers.
1986

Cadar. Symbolic execution for software testing in practice: preliminary assessment. ICSE
2011

» Cadar. Symbolic Execution for Software Testing: Three Decades Later. CACM 2013

> Cousot. Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints. POPL 1977.

» Cousot. Systematic Design of Program Analysis Frameworks. POPL 1979

vy

VVvyVvVVYyYvVYyyYy

v

7 /66

Software Verification Tools

A small sample:

VVyVVYVYYVYYVYY

Edmund Clarke. A Tool for Checking ANSI-C Programs. TACAS 2005.
Holzmann. The Model Checker SPIN. IEEE Trans. Software Eng 1997.

Musuvathi. CMC: A pragmatic approach to model checking real code. OSDI 2002.

Yang. Using Model Checking to Find Serious File System Errors. OSDI 2004
Ball. A decade of software model checking with SLAM. CACM 2011.
Godefroid, et al. DART: Directed Automated Random Testing. PLDI 2005.
Sen. CUTE: A Concolic Unit Testing Engine for C. ESEC/FSE 2005.

SAGE: Whitebox Fuzzing for Security Testing. CACM 2012.

8/66

Outline

Symbolic Execution

Symbolic Execution

9/66

Symbolic Execution and Path Constraints

Basic Idea

» Represent program variables as symbolic variables:
> Xq P—)X1,X2i—)X2,...,an—>Xn

» Program executions are described by formulas over symbolic
variables.

> f(X1,X2,...,Xn)
» Path Constraints

10/66

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. =u + x

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. =u + x

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. =u + x

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x-y

2. if(x > vy)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x-y

2. if(x > vy)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > y)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > y)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. =u + x

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

.u =
L 1f(x >y

oUW PO

function f(x,y)
X -y

)
=u + x
)

. if(u <0

assert false

. exit

Software Verification With Symbolic Execution

. u

oUW N O

function f(x,y)
X -y X>Y

L 1f(x >y

)
= u + x
)

. if(u <0

assert false

. exit

Software Verification With Symbolic Execution

oUW NP O

function f(x,y)

Uu=2X-Y
LU =X -y X>Y
Lif(x > y)
u=u+ x
if(u < 0)

assert false

. exit

Software Verification With Symbolic Execution

function f(x,y)
.U =X -y
Lif(x > y)
u=1u+ x
if(u < 0)
assert false
. exit

oUW NP O

Software Verification With Symbolic Execution

function f(x,y)
.U =X -y
if(x > vy)

= u + X
if(u < 0)
assert false
. exit

o Ul W NP O

Software Verification With Symbolic Execution

assert false
. exit

o Ul W NP O

assert false

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. = u + x

4, if(u < 0)

5. assert false
6. exit

assert false

Software Verification With Symbolic Execution

assert false
. exit

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. = u + x

4, if(u < 0)

5.

6

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > y)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

function f(x,y)
.U =X -y
Lif(x > y)
u=1u+ x

. if(u < 0)
assert false
. exit

oUW NP O

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. u=1u+ x

4, if(u < 0)

5. assert false
6. exit

11/66

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. =u + x

4, if(u < 0)

5. assert false
6. exit

11/66

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

11/66

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. =u + x

4, if(u < 0)

5. assert false
6. exit

11/66

Software Verification With Symbolic Execution

0. function f(x,y)
1. u=x -y

2. if(x > vy)

3. u=u+ X

4, if(u < 0)

5. assert false
6. exit

11/66

Outline

Symbolic Execution

Probabilistic Symbolic Execution

12/66

Probabilistic Symbolic Execution

Question
How likely is a certain program behavior?

13/66

Probabilistic Symbolic Execution

Question
How likely is a certain program behavior?

What is the the probability of a particular program execution path?

13/66

Probabilistic Symbolic Execution

Question
How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Path Constraint Probability

13/66

Probabilistic Symbolic Execution

Question
How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Path Constraint Probability
Let |PC;| be the number of solutions to PC;.

13/66

Probabilistic Symbolic Execution

Question
How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Path Constraint Probability
Let |PC;| be the number of solutions to PC;.

Let | D| be the size of the input domain D.

13/66

Probabilistic Symbolic Execution

Question
How likely is a certain program behavior?

What is the the probability of a particular program execution path?

Path Constraint Probability
Let |PC;| be the number of solutions to PC;.

Let | D| be the size of the input domain D.
Assuming D is uniformly distributed:

|PCil

13/66

bool checkPIN (guess|[])

for(i = 0; 1 < 4; i++)
if (guess[i] !'= PIN[i])
return false

return true

P: PIN, G: guess

>

bool checkPIN (guess|[])

for(i = 0; 1 < 4; i++)
if (guess[i] != PIN[i])
return false

return true

P: PIN, G: guess

< () 7

bool checkPIN (guess|[])

for(i = 0; 1 < 4; i++)
if (guess[i] !'= PIN[i])
return false

return true

P: PIN, G: guess

T PLO] # GlO
F
bool checkPIN (guess/[]) @
for(i = 0; i < 4; i++)

if (guess[i] != PIN[i])
return false
return true

P: PIN, G: guess

bool checkPIN (guess|
for(i = 0; i < 4; 1
f(guess([i] != PIN[
return false
return true

P: PIN, G: guess

< e 7

<R

P[0] = G[0]
P[1] # G[1]

T PlO] # GLO
bool checkPIN (guess| ‘ - gm;gm
for(i = 0; 1 < 4; i++)

if (guess[i] != PIN[i])

return false
return true @

P: PIN, G: guess

bool checkPIN (guess|
for(i = 0; i < 4; 1
f(guess([i] != PIN[
return false
return true

P: PIN, G: guess

< e 7

<
. v

P[0] = G[0]
P[1] # G[1]

P[0] = G[0]
P[1] =G|
P[2] # G2]

T PlO] # GLO
bool checkPIN (guess| ‘ - gm;gm
for(i = 0; 1 < 4; i++)

if (guess[i] != PIN[i])

return false P[0] = G[0]
return true P : G[1]
- Pl2] # Gi2]

P: PIN, G: guess @

bool checkPIN (guess|
for(i = 0; i < 4; 1
f(guess([i] != PIN[
return false
return true

P: PIN, G: guess

<o () 7

<
P
o

P[0] = G[0]
P[1] # G[1]

F’[O] = G[0]
P[] = @[]
P[2] # G2]

P[0] = G[0]
P[] = G[1]

P[2] = G[2]
PI3] # GI3]

bool checkPIN (guess|
for(i = 0; i < 4; 1
f(guess([i] != PIN[
return false
return true

P: PIN, G: guess

<o () 7

<
¢-

Pl0] = G[0]
Pl1] = G[1]
P2] = G[2]

P[3] = GI3]

P[0] = G[0]
P[1] # G[1]

F’[O] = G[0]
P[] = @[]
P[2] # G2]

P[0] = G[0]
P[] = G[1]
P[2] = G[2]

PI3] # GI3]

14 /66

Probabilistic Symbolic Execution

i 0 1 2 3 4
PC; | Pl0]# Gl0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[O]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI[3] = G[3]
|PCil
Pi

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

|PCi|

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

|PCi|

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC[| 72722

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128
: 172

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128
: 172

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC/ | 128
: 172

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | PNl = GI] | Pl =G[] | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

|PCi| | 128 ?2?7???
- 1/2

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | PNl = GI] | Pl =G[] | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC | 128 64
. 172 29777

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | PNl = GI] | Pl =G[] | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC | 128 64
: 172 174

15/66

Probabilistic Symbolic Execution
Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

i 0 1 2 3 4

PC; | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
Pl # Gl | P11 = GI] | P} =G | P[1] = G[1]
P21 # G[2] | P[2] = G[2] | P[2] = G[2]
P3] # GI3] | PI3] = G3]

[PC | 128 64
: 172 174

15/66

Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1 2 3 4
PC; | P[0] # G[0] | P[0] = G[0] | P[] = GI[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32
pi 1/2 1/4 178
|PCi|
D]

15/66

Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1

2 3 4
PC; | P[0] # G[0] | P[0] = G[0] | P[] = GI[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P[2] # G[2] | P[2] = G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32 16
Pi 1/2 1/4 1/8 1/16
|PCi|

15/66

Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1

2 3 4
PCi | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32 16 16
pi 172 1/4 178 1716 1716
|PC;|

15/66

Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

0

1

2 3 4
PCi | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
|PCi| | 128 64 32 16 16
pi 172 1/4 178 1716 1716
|PC;|

15/66

Probabilistic Symbolic Execution

Assume binary 4 digit PIN. P has 4 bits, G has 4 bits. |D| = 28 = 256.

A measure of program vulnerability

i 0 1 2 3 4
PCi | Pl0] # G[0] | P[0O] = G[0] | P[O] = GI[0] | P[O] = GI[0] | P[O] = G[O]
P11 # GI1] | P11 =G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
|PCi| | 128 64 32 16 16
pi 172 1/4 178 1716 1716
|PC;|
|D|

Probability that an adversary can guess a prefix of length i in 1 guess is given by p;.

15/66

Outline

Symbolic Execution

SMT Solvers

16/66

Satisfiability Modulo Theories (SMT) Solvers

Problem: how to solve path constraints?

17/66

Satisfiability Modulo Theories (SMT) Solvers

Problem: how to solve path constraints?
Satisfiability Modulo Theories (SMT) Solvers

17/66

Satisfiability Modulo Theories (SMT) Solvers

Problem: how to solve path constraints?
Satisfiability Modulo Theories (SMT) Solvers

SMT solvers determine the satisfiability of formulas from
combinations of theories including:

» Linear Integer Arithmetic (LIA)
» Strings
» Bitvectors
> Arrays
» Uninterpreted Functions

17 /66

Satisfiability Modulo Theories (SMT) Solvers

Problem: how to solve path constraints?
Satisfiability Modulo Theories (SMT) Solvers

SMT solvers determine the satisfiability of formulas from
combinations of theories including:

» Linear Integer Arithmetic (LIA)
» Strings
» Bitvectors
> Arrays
» Uninterpreted Functions

Existing SMT solvers include: Z3, CVC4, MathSAT, . ..

17 /66

Work in SMT Solvers

vvyyvyy

VVvyYVYyYVYYVYY

Birnbaum. The good old Davis-Putnam procedure helps counting models. JAIR 1999
Vijay Ganesh. Decision Procedures for Bit-Vectors, Arrays and Integers(PhD. Thesis) 2007.
Jha. Engineering an efficient SMT solver for bit-vector arithmetic. CAV 2009.

Bryant, S. M. German, and M. N. Velev, Microprocessor Verification Using Efficient Decision
Procedures for a Logic of Equality with Uninterpreted Functions. ATRM 1999.

Davis. A Computing Procedure for Quantification Theory. JACM 1960.
Davis. A Machine Program for Theorem-Proving. CACM 1962.
Kroening. Decision Procedures - an algorithmic point of view. TCS 2008
Deters. A tour of CVC4: How it works, and how to use it. FMCAD 2014.
Barrett. CVC4. CAV 2011

De Moura. Z3: an efficient SMT solver. TACAS 2008

18/66

Satisfiability Modulo Theories (SMT) Solvers

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

A decision procedure for satisfiability of Boolean formulas in
conjunctive normal form (CNF-SAT).

19/66

Satisfiability Modulo Theories (SMT) Solvers

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

A decision procedure for satisfiability of Boolean formulas in
conjunctive normal form (CNF-SAT).

This is the core algorithm used in SMT solvers.

19/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output : true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Function : DPLL(¢)

Input : CNF formula ¢ over n variables
Output :true or false, the satisfiability of F
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return true

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue]) v DPLL(¢[x — false])
end

20/66

Satisfiability Modulo Theories (SMT) Solvers

DPLL uses Unit Propagation.

p={xVy-xvz,zvw,x,yVvv}

21/66

Satisfiability Modulo Theories (SMT) Solvers

DPLL uses Unit Propagation.

p={xVy-xvz,zvw,x,yVvv}

' ={z,x,yVvv}

21/66

DPLL Execution Example

{z,x,y v v}

DPLL Execution Example

{z,x,y v v}

/

X — F

/

UNSAT {z,F,yVvv}

DPLL Execution Example

{z,x,y vV v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

DPLL Execution Example

{z,x,y vV v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/

z— F

/

UNSAT {F, T,y Vv v}

DPLL Execution Example

{z,x,y v v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/N

z—F z—T

/ \

UNSAT {F,T,yvv} (T, T,yvv}

DPLL Execution Example

{z,x,y v v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/N

z—F z—T

/ \

UNSAT {F,T,yvv} (T, T,yvv}

/

y—F

/

{T,T,Fvv}

DPLL Execution Example

{z,x,y v v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/N

z—F z—T

/ \

UNSAT {F,T,yvv} (T, T,yvv}

/

y—F

/

{T,T,Fvv}

/

v F

/

UNSAT {T,T,FV F}

DPLL Execution Example

{z,x,y v v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/N

z—F z—T

/ \

UNSAT {F,T,yvv} (T, T,yvv}

/

y—F

/

{T,T,Fvv}

/ N\

v F ve T

/ N\

UNSAT {T,T,FVF} {T,T,FV T} SAT

22/66

DPLL Execution Example

{z,x,y v v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/N

z—F z—T

/ \

UNSAT {F,T,yvv} (T, T,yvv}

/ N\

y—F y—T

/ \

{T,T,Fvv} {T, T, Tvv} SAT

/ N\

v F ve T

/ N\

UNSAT {T,T,FVF} {T,T,FV T} SAT

22/66

DPLL Execution Example

{z,x,y Vv v}

/ N\

X—F x—T

/ \

UNSAT {z,F,yvv} {z,T,yvv}

/N

z—F z—T

/ \

UNSAT {F,T,yvv} (T, T,yvv}

/ N\

y—F y—T

/ \

{T,T,Fvv} {T, T, Tvv} SAT

/ N\

v F ve T

/ N\

UNSAT {T,T,FVF} {T,T,FVv T} SAT

Result: ¢ is satisfiable.

22 /66

Software Verification With Symbolic Execution

Symbolic Execution

23/66

Software Verification With Symbolic Execution

Symbolic Execution

» Summarizes program executions with path constraints.

23/66

Software Verification With Symbolic Execution

Symbolic Execution

» Summarizes program executions with path constraints.
» Relies on efficient solution of PCs - use SMT solvers.

23/66

Software Verification With Symbolic Execution

Symbolic Execution

» Summarizes program executions with path constraints.
» Relies on efficient solution of PCs - use SMT solvers.

» Warning: very effective, but unsound and can be expensive.

23/66

Software Verification With Symbolic Execution

Symbolic Execution

» Summarizes program executions with path constraints.
» Relies on efficient solution of PCs - use SMT solvers.
» Warning: very effective, but unsound and can be expensive.

Variants of Symbolic Execution

» Standard

> Cadar. Symbolic execution for software testing in practice: preliminary assessment.
ICSE 2011
> Cadar. Symbolic Execution for Software Testing: Three Decades Later. CACM 2013

» Probabilistic
> Geldenhuys. Probabilistic symbolic execution. ISSTA 2012

23/66

Overview

Symbolic

Path Co

nstraints

Model
Counting

Probability

Distribution

Side Program
Channel Vulnerability

Ana

lysis Quantification

24 /66

Outline

Side Channel Analysis
Background and Information Theory

25/66

What is a side channel?

How’s the weather?

26/66

What is a side channel?

How’s the weather?

Direct Channel: Go outside and look up.

26/66

What is a side channel?

How’s the weather?

Direct Channel: Go outside and look up.

But, I'm too busy working on my MAE.

26/66

What is a side channel?

How’s the weather?

Direct Channel: Go outside and look up.
But, I'm too busy working on my MAE.

Side Channel: Did Bo ride his bike today?

26/66

What is a side channel?

How’s the weather?

Direct Channel: Go outside and look up.

But, I'm too busy working on my MAE.

Side Channel: Did Bo ride his bike today?

Learn some information through an indirect observation.

Observe Bo instead of the weather.

26/66

Side Channel Analysis

As a software verification problem

27 /66

Side Channel Analysis

As a software verification problem

Verify that a program does not leak “too much” confidential
information to an adversary who can observe:

» Computation time
» Power usage

» Memory allocations
» Network packet size
» Keystroke time

27 /66

Side Channel Analysis
First considered at the hardware level.

int modPow (int num, int privatekey, int publickey)
int s = 1, y = num, result = 0;
while (privatekey > 0)

[

if (privatekey % 2 == 1)
)

% publickey;

result = (s *x y
else
result = s;
s = (result x result) % publickey;

privatekey /= 2;
return result;

28/66

Side Channel Analysis
First considered at the hardware level.

int modPow (int num, int privatekey, int publickey)
int s = 1, y = num, result = 0;
while (privatekey > 0)

[

if (privatekey % 2 == 1)
)

% publickey;

result = (s *x y
else
result = s;
s = (result x result) % publickey;

privatekey /= 2;
return result;

28/66

Side Channel Analysis
First considered at the hardware level.

int modPow (int num, int privatekey, int publickey)

int s = 1, y = num, result = 0;
while (privatekey > 0)
if (privatekey % 2 == 1)
result = (s * y) % publickey;
else
result = s;
s = (result x result) % publickey;

privatekey /= 2;
return result;

28/66

Side Channel Analysis
First considered at the hardware level.

int modPow (int num, int privatekey, int publickey)
int s = 1, y = num, result = 0;
while (privatekey > 0)

[

if (privatekey % 2 == 1)
)

% publickey;

result = (s *x y
else
result = s;
s = (result x result) % publickey;

privatekey /= 2;
return result;

28/66

Side Channel Analysis
First considered at the hardware level.

int modPow (int num, int privatekey, int publickey)

int s = 1, y = num, result = 0;
while (privatekey > 0)
if (privatekey % 2 == 1)
result = (s * y) % publickey;
else
result = s;
s = (result x result) % publickey;

privatekey /= 2;
return result;

sesliefisononienoniialie

000 1 i1 0000 9 000 91 1 0

28/66

Side Channel Analysis
A lot of research interest

> Geoffrey Smith. On the Foundations of Quantitative Information Flow. FOSSACS 2009
Pasquale Malacaria. Assessing security threats of looping constructs. POPL 2007

David Clark. A static analysis for quantifying information flow in a simple imperative
language. JCS (2007)

Jonathan Heusser. Quantifying information leaks in software. ACSAC 2010: 261-269
Quoc-Sang Phan. Symbolic quantitative information flow. ACM SIGSOFT SEN 2012
Quoc-Sang Phan. Quantifying information leaks using reliability analysis. SPIN 2014
Stephen McCamant. QIF as network flow capacity. PLDI 2008

Stephen McCamant. QIF tracking for C and related languages. MIT CSAIL 2006

Michael Backes. Automatic Discovery and Quantification of Information Leaks. SSP 2009

Shuo Chen. Side-Channel Leaks in Web Applications: A Reality Today, a Challenge
Tomorrow. IEEE SSP 2010

Goran Doychev. CacheAudit: A Tool for the Static Analysis of Cache Side Channels.
USENIX Security 2013

> Boris Kopf. Automatically deriving information-theoretic bounds for adaptive side-channel
attacks. JCS 2011

» Dawn Xiaodong Song. Timing analysis of keystrokes and timing attacks on SSH. USENIX
Security SSYM 2001

» Thomas S. Messerges. Power Analysis Attacks of Modular Exponentiation in Smartcards,
CHES 2002

VVyVYyVYYVYYVYY vy

v

29/66

Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> Z ~ U(min, max)

30/66

Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> Z ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on Z
> Iy ~ biff f(h) = f(k)

30/66

Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> Z ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on Z
> Iy ~ biff f(h) = f(k)

Example: C outputs last 4 digits of CC#

30/66

Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> 7 ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on Z
> Iy ~ biff f(h) = f(k)

Example: C outputs last 4 digits of CC#

» f(n) =n mod 10000

30/66

Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> 7 ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on Z
> Iy ~ biff f(h) = f(k)

Example: C outputs last 4 digits of CC#

» f(n) =n mod 10000
» f(0000 0000 0000 6789) = 6789

30/66

Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> 7 ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on Z
> Iy ~ biff f(h) = f(k)

Example: C outputs last 4 digits of CC#

» f(n) =n mod 10000
» f(0000 0000 0000 6789) = 6789 = f(1111 1111 1111 6789)

30/66

Quantitative Information Flow
A Concepetual Framework

» Let C be a program with inputs / € Z and observables O € O
» C is deterministic.
> 7 ~ U(min, max)

Then there exists a function f : Z — O such that

» finduces an equivalence relation on 7
> Iy ~ biff f(h) = f(k)
Example: C outputs last 4 digits of CC#

» f(n) =n mod 10000
» f(0000 0000 0000 6789) = 6789 = f(1111 1111 1111 6789)
» 0000 0000 0000 6789 ~ 1111 1111 1111 6789

30/66

Information Gain

Adversarial Model
A malicious adversary can see the observables, O.

This tells adversary which equivalence class / belonged to.

That is, the adversary gains information about what the input was.

31/66

Information Gain

Adversarial Model
A malicious adversary can see the observables, O.

This tells adversary which equivalence class / belonged to.

That is, the adversary gains information about what the input was.

How much can the adversary learn?

Quantify using information theory.

31/66

Information Theory

32/66

Information Theory

32/66

Information Theory

“A Theory of Communication”. Bell System Technical Journal, 1948.

32/66

Information Theory

“A Theory of Communication”. Bell System Technical Journal, 1948.

1
H= Zpiloga

32/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S=1{0,1,2,3,...,254,255}

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S=1{0,1,2,3,...,254,255}

How many bits needed to distingish x, y € S?

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

S ={0,...,31},

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So={0,...,31},S; = {32,...,63},

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

How many bits needed to distinguish S;, S; C S§?

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

How many bits needed to distinguish S;, S; C S§?

Iogz35—26:I098:3

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

How many bits needed to distinguish S;, S; C S§?
256
log 32— log8 =3
256

32
33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

How many bits needed to distinguish S;, S; C S§?
256
log 32— log8 =3

0075 g (32
932 =99 256

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

How many bits needed to distinguish S;, S; C S§?
256
log 32— log8 =3

256 32\°" B

33/66

Information Theory Intuition
Logarithm gives the necessary number of bits

S$=1{0,1,2,3,...,254, 255}
How many bits needed to distingish x, y € S? log,(256) = 8

What about a partition?

So=1{0,...,31}, S = {32,...,63}, ...,S5 = {224,...,255}

How many bits needed to distinguish S;, S; C S§?

Iogz35—26:I098:3

256 32\°" B 1
'0932='°9(256) :'°g(|3|) = 19 55)

Information Theory Intuition

Information Entropy, H = 3° pilog =

34 /66

Information Theory Intuition

Information Entropy, H = >_ p; lOQ%,- =F [Iog :7]

34 /66

Information Theory Intuition

Information Entropy, H =" pi |Og%,. — /5 ['09 %]

The expected amount of information gain.

34 /66

Information Theory Intuition
Information Entropy, H = >_ p; Iog%i =E [Iog l}]

The expected amount of information gain.
The expected amount of “surprise”.

34 /66

Information Theory Intuition

1

Information Entropy, H = >_ p; Iog,%,. =E ['09 ,7,]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain = 17psun =0

34 /66

Information Theory Intuition

Information Entropy, H =" pi |Og,%,, — /5 ['09 %]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain =1, Psun = 0 H=0

34/66

Information Theory Intuition

Information Entropy, H =" pi |Og%,, — /5 ['09 %]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain =1, Psun = 0 H=0

Costa Rica Weather, Coin Flip

1 1
Prain = 3, Psun = 3

34 /66

Information Theory Intuition

Information Entropy, H =" pi |Og%,, — /5 ['09 %]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain =1, Psun = 0 H=0

Costa Rica Weather, Coin Flip
prain:%nDsun:% H=1

34/66

Information Theory Intuition

Information Entropy, H =" pi |Og%,, — /5 ['09 ,%]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain =1, Psun = 0 H=0

Costa Rica Weather, Coin Flip
prain:%nOsun:% H=1

Santa Barbara Weather, Almost Always Beautiful!

1 9
Prain = 195 Psun = 15

34 /66

Information Theory Intuition

Information Entropy, H =" pi |Og%,, — /5 ['09 ,%]

The expected amount of information gain.
The expected amount of “surprise”.

Seattle Weather, Always Raining
Prain =1, Psun = 0 H=0

Costa Rica Weather, Coin Flip
prain:%nOsun:% H=1

Santa Barbara Weather, Almost Always Beautiful!
Prain = 11_07psun = 1i H = 0.4960

34 /66

Outline

Side Channel Analysis

Via Probabalistic Symbolic Execution

35/66

Software Side Channel Analysis

High Level Idea:

» Define symbolic execution observation model (0;):

36/66

Software Side Channel Analysis

High Level Idea:

» Define symbolic execution observation model (0;):

» Execution time — number of instructions (lines of code) executed.
» Memory — number of malloc, bytes written to file, ...

36/66

Software Side Channel Analysis

High Level Idea:

» Define symbolic execution observation model (0;):

» Execution time — number of instructions (lines of code) executed.
» Memory — number of malloc, bytes written to file, ...

» Keep track of observations o; during PSE.

36/66

Software Side Channel Analysis

High Level Idea:

» Define symbolic execution observation model (0;):

» Execution time — number of instructions (lines of code) executed.
» Memory — number of malloc, bytes written to file, ...

» Keep track of observations o; during PSE.
» Quantify information gain: H = >_ p;log é

36/66

bool checkPIN (guess|[])

for(i = 0; i < 4; i++)
if (guess[i] != PIN[i])
return false

return true

P: PIN, G: guess

o; = lines of code

bool checkPIN (guess|[])

for(i = 0; i < 4; i++)
if (guess[i] != PIN[i])
return false

return true

P: PIN, G: guess

o; = lines of code

o i)
0 =3

bool checkPIN (guess|[])

for(i = 0; i < 4; i++)
if (guess[i] != PIN[i])
return false

return true

P: PIN, G: guess

o; = lines of code

bool checkPIN (guess|
for(i =0; 1 < 4; 1
f (guess[i] PIN[
return false
return true

P: PIN, G: guess

o; = lines of code

’-
‘-
‘T
’-

P[0] = G[0]
P[] = @G[1]

P[2] = G[2]
PI3] = GI3]

o, =10

0 =3

P[O] = G[o]
PI1] # G[1]

01

o
N

=5

S
N OO
N

e
Y FoYoYnYo)

37/66

i 0 1 2 3 4
PC; | PJ0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = GIO]
P[] # G[1] | P[1]1=G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
return | false false false false true
[PC/| | 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o 3 5 7 9 10

38/66

i 0 1 2 3 4
PC; | PJ0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = GIO]
P[] # G[1] | P[1]1=G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
return | false false false false true
[PC/| | 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o 3 5 7 9 10

38/66

i 0 1 2 3 4
PC: | P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = G[0] | P[O] = G[O]
Pl # G | POl =G[1] | P[1] = G[1] | P[1] = G[1]
P[2] £ G[2] | P[2] = G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
return | false false false false true
|PCi| 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o; 3 5 7 9 10

38/66

i 0 1 2 3 4
PC; | PJ0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = GIO]
P[] # G[1] | P[1]1=G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
return | false false false false true
[PC/| | 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o 3 5 7 9 10

38/66

i 0 1 2 3 4
PC; | PJ0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = GIO]
P[] # G[1] | P[1]1=G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
return | false false false false true
[PC/| | 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o 3 5 7 9 10

38/66

i 0 1 2 3 4
PC; | PJ0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = GIO]
P[] # G[1] | P[1]1=G[1] | P[1]=G[1] | P[1] = G[1]
P2] # G[2] | P[2]=G[2] | P[2] = G[2]
P[3] # G[3] | PI3] = G[3]
return | false false false false true
[PC/| | 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o 3 5 7 9 10

H:prlog% = 1.8750

38/66

i 0 1 2 3 4
PCi P[0] # G[0] | P[0] = G[0] | P[0] = G[0] | P[O] = G[0] | PIO] = G[0]
Pl # G | POl =aG[1] | P[1]=G[1] | P[1] = G[1]
Pl2] # G[2] | P[2] = G[2] | P[2] = G[2]
P[3] # G[3] | P[3] = G[3]
return | false false false false true
[PCi| | 128 64 32 16 16
pi 1/2 1/4 1/8 1/16 1/16
o; 3 5 7 9 10

H:Zp,-log%:1.8750

A measure of program vulnerability

H = expected amount of information that an adversary can gain in 1 guess.

38/66

Side Channel Analysis

A more secure 4 digit PIN verification function:

public verifyPassword (guess|[])
matched = true
for (int i = 0; 1 < 4; 1i++)
if (guess[i] !'= PIN[1i])
matched = false
else

matched matched

return matched

39/66

Side Channel Analysis

A more secure 4 digit PIN verification function:

public verifyPassword (guess|[])
matched = true
for (int i = 0; 1 < 4; 1i++)
if (guess[i] !'= PIN[1i])
matched = false
else
matched

matched
return matched

Only 2 oservables: oy = perfect match, oy = not perfect match.

39/66

Side Channel Analysis

A more secure 4 digit PIN verification function:

public verifyPassword (guess|[])
matched = true
for (int i = 0; 1 < 4; 1i++)
if (guess[i] !'= PIN[1i])
matched = false
else
matched

matched
return matched

Only 2 oservables: oy = perfect match, oy = not perfect match.

p(00) = 1/16,p(01) = 15/16

39/66

Side Channel Analysis

A more secure 4 digit PIN verification function:

public verifyPassword (guess|[])
matched = true
for (int i = 0; 1 < 4; 1i++)
if (guess[i] !'= PIN[1i])
matched = false
else
matched

matched
return matched

Only 2 oservables: oy = perfect match, oy = not perfect match.
p(oo) = 1/16,p(01) = 15/16
Hsecure - 0.33729

39/66

Side Channel Analysis

A more secure 4 digit PIN verification function:

public verifyPassword (guess|[])
matched = true
for (int i = 0; 1 < 4; 1i++)
if (guess[i] !'= PIN[1i])
matched = false
else
matched

matched
return matched

Only 2 oservables: oy = perfect match, oy = not perfect match.
p(oo) = 1/16,p(01) = 15/16
Hsecure = 033729 < Hjnsecure = 18750

39/66

Side Channel Analysis

Summary

» Observe non-functional aspects of computatation to learn
information.

» Probabalistic symbolic execution provides p;, o;
» Quantify information gain: H = >_ p;log é

40/66

Side Channel Analysis

Summary

» Observe non-functional aspects of computatation to learn
information.

» Probabalistic symbolic execution provides p;, o;
» Quantify information gain: H = >_ p;log é

Remaining issues
» How to determine the number of solutions to path constraints?

» Path constraints for real programs could involve boolean
formulas, strings, numeric constraints.

40/66

Overview

Symbolic

Path Co

nstraints

Model
Counting

Probability

Distribution

Side Program
Channel Vulnerability

Ana

lysis Quantification

41/66

Model Counting

Recall the classic (boolean) SAT problem

Given a formula ¢ from propositional logic, is it possible to assign all
variables the values T (true) or F (false) so that the formula is true?

42 /66

Model Counting

Recall the classic (boolean) SAT problem

Given a formula ¢ from propositional logic, is it possible to assign all
variables the values T (true) or F (false) so that the formula is true?

Example:

d=XVY)AN(=XxVZ)A(ZVW)AXA(YyVV)

42 /66

Model Counting

Recall the classic (boolean) SAT problem

Given a formula ¢ from propositional logic, is it possible to assign all
variables the values T (true) or F (false) so that the formula is true?

Example:

d=XVY)AN(=XxVZ)A(ZVW)AXA(YyVV)

¢ is satisfiable by setting
(y,z,w,v)=(T,F,T,F,T).

42 /66

Model Counting

Recall the classic (boolean) SAT problem

Given a formula ¢ from propositional logic, is it possible to assign all
variables the values T (true) or F (false) so that the formula is true?

Example:

d=XVY)AN(=XxVZ)A(ZVW)AXA(YyVV)

¢ is satisfiable by setting
(y,z,w,v)=(T,F,T,F,T).

A satisfying assignment is called a model for ¢.

42 /66

Model Counting

The model counting problem

Given a formula ¢ over some theory (Boolean, LIA, Strings, . ..)

how many models are there for ¢?

43/66

Model Counting

The model counting problem

Given a formula ¢ over some theory (Boolean, LIA, Strings, ...)

how many models are there for ¢?

Difficulty of Model Counting

Model counting is “at least as hard” than satisfiability check.

43/66

Model Counting

The model counting problem

Given a formula ¢ over some theory (Boolean, LIA, Strings, ...)

how many models are there for ¢?

Difficulty of Model Counting

Model counting is “at least as hard” than satisfiability check.

|p| > 0 < ¢ is satisfiable

43/66

Work on Model Counting

vVVvyYVYyYvVYYy

v

Stanley. Enumerative Combinatorics Chapter 4. 2004.

Sedgwick. Analytic Combinatorics Chapter 5: Generating Functions. 2009
Biere. Handbook of Satisfiability. Chapter 20: Model Counting. 2009
Pugh. Counting Solutions to Presburger Formulas: How and Why. 1994

Parker. An Automata-Theoretic Algorithm for Counting Solutions to Presburger Formulas.
Compiler Construction 2004

Boigelot. Counting the solutions of Presburger equations without enumerating them. TCS
2004.

Barvinok. A polynomial time algorithm for counting integral points in polyhedra when the
dimension is fixed. Mathematics of Operations Research 1994

De Loerab. Effective lattice point counting in rational convex polytopes. JSC 2004

Verdoolaege. Counting integer points in parametric polytopes using Barvinoks’s Rational
Functions. 2007

Kopf Symbolic Polytopes for Quantitative Interpolation and Verification. CAV 2015
Luu. A Model Counter For Constraints Over Unbounded Strings. PLDI 2014

Ravikumara. Weak minimization of DFA - an algorithm and applications.Implementation and
Application of Automata 2004

Chomsky. The Algebraic Theory of Context-Free Languages. 1963
Phan. Model Counting Modulo Theories. PhD Thesis 2014.
Birnbaum. The good old Davis-Putnam procedure helps counting models. JAIR 1999

44 /66

Outline

Model Counting
Boolean Logic

45/66

Model Counting Boolean SAT

L L LR RFE

FLbFFLFLEFLEFLEWL-

FLULbFLULEFRFLLEFR

L-FFFLLLLE-RFRFR

LLLULUbFFRFRRFRR

FIF|F|F|F

FFFFFRFRFRFRRFRFRFRF

46/66

Model Counting Boolean SAT

¢ has 6 models.

L LPFLLLL =~

FLFLFLRFLEFLEFLLFE-

FLLbFFLLEFRFLLERF

LFFFRFLLLLEFRFRFEF

TR T TR I T e e e O el L

FIF|F|F|F

FFFFFRFRFRFRFRFRFEFE

46/66

Model Counting Boolean SAT

Truth table method is 6(27).

¢ has 6 models.

LWL

LWLk

Lk

LWL

Ll T

LWk

LW

TRNTRNTIN T

[Wy Wy ¥ My Wy 1 Wy

FHEFEFEFE

FIF|F|F|F

e

FHEFEFEFE

46/66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢,)

Input : CNF formula ¢ over n variables;
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return frue

x < SelectBranchVariable(¢)

return DPLL(g[x — frue],) vV DPLL(g[x — true],)
end

47 /66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, {)

Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return frue

x < SelectBranchVariable(¢)

return DPLL(¢[x — true],t — 1) vV DPLL(¢[x — true],t — 1)
end

47 /66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, t)

Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return false

if all clauses of ¢ satisfied then return frue

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue],t — 1) vV DPLL(¢[x — true],t — 1)
end

47 /66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, t)

Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return 0

if all clauses of ¢ satisfied then return frue

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue],t — 1) vV DPLL(¢[x — true],t — 1)
end

47 /66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, t)

Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return 0

if all clauses of ¢ satisfied then return frue

x < SelectBranchVariable(¢)

return DPLL(¢[x — true],t — 1) vV DPLL(¢[x — true],t — 1)
end

47 /66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, t)

Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return 0

if all clauses of ¢ satisfied then return frue

x < SelectBranchVariable(¢)

return DPLL(¢[x — true],t — 1) vV DPLL(¢[x — true],t — 1)
end

47 /66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, t)

Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return 0

if all clauses of ¢ satisfied then return 2!

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue],t — 1) vV DPLL(¢[x — true],t — 1)
end

47 /66

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

DPLL can be converted into a procedure for #CNF-SAT.

Function : DPLL(¢, t)

Input : CNF formula ¢ over nvariables; t € Z
Output : #¢, the model count of ¢
begin

UnitPropagate(¢)

if ¢ has false clause then return 0

if all clauses of ¢ satisfied then return 2!

x < SelectBranchVariable(¢)

return DPLL(¢[x — frue],t — 1) + DPLL(¢[x — true],t — 1)
end

47 /66

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

e

X — F

d

0 {z,F,yvvit=4

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

N

X — F x— T

/ N

0 {z,F,yvv}it=4 {z, T,yvvit=4

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

RN
X — F x— T
e N
0 {z,F,yvv}it=4 {z, T,yvvit=4
e
z— F
S

0 {F, T,yvv}t=3

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

RN
X — F x— T
e N
0 {z,F,yvv}it=4 {z, T,yvvit=4
PN
z— F z— T
S AN

0 {F, T,yvv}t=3 {T,T,yvv}it=38

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

/ \
X — F x— T
S AN
0 {z,F,yvv}it=4 {z, T,yvvit=4
/ \
z— F z— T
/ \
0 {F, T,yvv}t=3 {T,T,yvv}it=38
e
y—F
S

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

/ \
X — F x— T
e N
0 {z,F,yvv}it=4 {z,T,yvv}t=4
/ \
z— F z— T
/ \
0 {F, T,yvv}t=3 {T,T,yvv}it=38
S
y—F
S
{T,T,Fvvit=2
/
ve— F
/

0 {T,T,FVF}t=1

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

N
x— F x—T
/ N
0 {z,F,yvvit=4 {z, T,yvvit=4
VRN
z— F z— T
~ N
0 {F, T,yvv}t=3 {T,T,yvv}it=38
S
y—F
{T,T,Fvv}t=2
PN
vi— F vi—> T
i N

0 {7, T,FVF}t=1 ol —o {T, T, FVT}t=1

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

/ \
x— F x—T
/ N
0 {z,F,yvv}it=4 {z, T,yvvit=4
/ \
z— F z— T
/ \
0 {F,T,yvv}t=3 {T,T,yvv}t=3
RN
y—F y—T

0 {7, T,FVF}t=1 ol —o {T, T, FVT}t=1

48/66

Counting with DPLL

p={xVy,~xVvzzvw,x,yvv}n=5

{z,x,yVvv}t=5

/ \
x— F x—T
/ N
0 {z,F,yvv}it=4 {z, T,yvvit=4
/ \
z— F z— T
/ \
0 {F,T,yvv}t=3 {T,T,yvv}t=3
RN
y—F y—T

0 {7, T,FVF}t=1 ol —o {T, T, FVT}t=1

Result: 0 + 0+ 0+ 2 + 4 = 6 models
48/66

Model Counting for Other Theories

49/66

Model Counting for Other Theories

Generating functions are a way to compactly represent
(possibly infinite) sequences.

49/66

Model Counting for Other Theories

Generating functions are a way to compactly represent
(possibly infinite) sequences.

1
9(z) = m

49/66

Model Counting for Other Theories
Generating functions are a way to compactly represent

(possibly infinite) sequences.

9(2) = (1_2)3 Zakz

49/66

Model Counting for Other Theories

Generating functions are a way to compactly represent
(possibly infinite) sequences.

9(2) = - 2)3 Zakz

9(2) =12° + 32" + 622 + 102% + 152* + . ..

49/66

Model Counting for Other Theories

Generating functions are a way to compactly represent
(possibly infinite) sequences.

9(2) = (1_2)3 Zakz

9(2) =12° + 32" + 622 + 102% + 152* + . ..

g(z) = aOZ0 + ay Z' aF 8222 + 8323 + a4Z4 + ...

49/66

Outline

Model Counting

Strings

50/66

Model Counting Strings

A formula over the theory of strings can involve
» Word Equations: XoU=YoZ

51/66

Model Counting Strings

A formula over the theory of strings can involve

» Word Equations: XoU=YoZ
» Length Constraints: 4 < Length(X) < 10

51/66

Model Counting Strings

A formula over the theory of strings can involve

» Word Equations: XoU=YoZ
» Length Constraints: 4 < Length(X) < 10
» Regular Language Membership: X € (a|b)*

51/66

Model Counting Strings

A formula over the theory of strings can involve

Word Equations: XoU =Y oZ

Length Constraints: 4 < Length(X) < 10

Regular Language Membership: X < (a|b)*

and more complex constraints: (X = substring(Y,i,j), ...)

vV v v v

51/66

Model Counting Strings

A formula over the theory of strings can involve

Word Equations: XoU =Y oZ

Length Constraints: 4 < Length(X) < 10

Regular Language Membership: X € (a|b)*

and more complex constraints: (X = substring(Y,i,j), ...)

vV v v v

51/66

Regular Expressions

X € (0[(1(0170)*1))*
Q: How many solutions for X?

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes

ax=1{s:se L,len(s) = k}|

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes

ax=1{s:se L,len(s) = k}|

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

g9(2)=12°

ay

k X
0

L}

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

9(z) =12+ 12

ay

L}

k
0
1

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes

ax=|{s:se L,len(s) = k}

9(z) =12 +12' +12°

k X ak
0 € 1
1 0 1
2 11 1

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

9(2) =122 +12' + 122 +12°

k X ak
0 € 1
1 0 1
2 11 1
3 110 1

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

9(2) =120 +12' + 122 +123 + 324

k X ak
0 € 1
1 0 1
2 11 1
3 110 1
4 1001,1100,1111 3

52/66

Regular Expressions

X € (0|(1(01*0)*1))*
Q: How many solutions for X? A: Infinitely many!

Q: How many solutions for X of length k?
A generating function for language £ encodes
ax=1{s:se L,len(s) = k}|

9(2) =122 +12' +122 +12° + 32* +52° + ...

k X ak
0 € 1
1 0 1
2 11 1
3 110 1
4 1001,1100,1111 3
5 10010,10101,11000,11011,11110 5

52/66

Regular Expressions

For a regular expression constraint, GF can be derived
recursively.

53/66

Regular Expressions

For a regular expression constraint, GF can be derived
recursively.

0

53/66

Regular Expressions

For a regular expression constraint, GF can be derived
recursively.

€ — 120
@ — 1z

53/66

Regular Expressions

For a regular expression constraint, GF can be derived
recursively.

€ — 120
c — 1z
AB — A(z)+ B(2)

53/66

Regular Expressions

For a regular expression constraint, GF can be derived

recursively.

AB
AoB

L L& &

120
12!
A(2) + B(2)
A(z) x B(2)

53/66

Regular Expressions

For a regular expression constraint, GF can be derived

recursively.

AB
AoB
A*

L&

53/66

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X € (0|(1(01*0)*1))*

Regular Expressions

X e (0|(1(0170)*1))"

54 /66

Regular Expressions

X € (0|(1(01*0)*1))*

Generating Function:

9(z) = ———

1—z—
1_i
1-z

Regular Expressions

X € (0|(1(01*0)*1))*

Generating Function:

9(z) = ———

1—z—
1_i
1-z

1—z—2°
(z—1)(2z2+z—-1)

Regular Expressions

X € (0|(1(01*0)*1))*

Generating Function:

9(z) = ———

1—z—
1_i
1-z

1—z—2°
(z—1)(2z2+z—-1)

Deterministic Finite Automata

55/66

Deterministic Finite Automata

X € (0](1(01*0)*1))*

55/66

Deterministic Finite Automata

X € (0](1(01*0)*1))*

1 0
Soss oo

55/66

Deterministic Finite Automata

X € (0](1(01*0)*1))*

1 0
Soss oo

{s:s e L, len(s) = k}| = |{r : w is accepting path of length k}|

55/66

Deterministic Finite Automata

X € (0](1(01*0)*1))*

1 0
Soss oo

{s:s e L, len(s) = k}| = |{r : w is accepting path of length k}|

String counting = path counting

55/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic
Programming

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic
Programming

&
50,
)

ns(K)

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic
Programming

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix
Programming Exponentiation
O
OO,
)

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix
Programming Exponentiation
(s) 110
A=1(1 0 1
g) 0 1 1

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix
Programming Exponentiation
(s) 110
A=1(1 0 1
g) 0 1 1

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix
Programming Exponentiation
(s) 110
A=1(1 0 1
g) 0 1 1
(Ak)//
ns(k) =Y ne(k—1)
s'—s (A4)00:3

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix Generating
Programming Exponentiation Functions
(s) 110
A=(1 0 1
g) 0 1 1
(Ak)//

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix Generating
Programming Exponentiation Functions
9 110 110
@ e A=11 0 1 A=|1 0 1
& 0 1 1 0 1 1
(Ak)//

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix Generating
Programming Exponentiation Functions
&) 110 10
@ e A=11 0 1 A=|1 0 1
& 0 1 1 0 1 1
_det(/—zA: i,))
(A9)ij 92) = (Thyrdet(- z4)

56/66

Deterministic Finite Automata
0

1
oCEI__1TL 1201

]

How to count paths of length k?

Dynamic Matrix Generating
Programming Exponentiation Functions
&) 110 10
@ e A=11 0 1 A=|1 0 1
&) 0 1 1 0o 1 1
det(/ — zA : i,)
(A“)ij 9 = Hyrget(i — 4)
1_7_72
ns(k) =Y ns(k—1) 9(2) = %
s'—s (A4)0)0 =3

56/66

Outline

Model Counting

Linear Ineger Arithmetic

57 /66

Model Counting Linear Integer Arithmetic

58/66

Model Counting Linear Integer Arithmetic

What is this language?

X € (0](1(0170)*1))*

58/66

Model Counting Linear Integer Arithmetic

What is this language?

X € (0](1(01*0)*1))*

L(X) = {s|s is a binary number divisible by 3}

58/66

Model Counting Linear Integer Arithmetic

What is this language?

X € (0](1(01*0)*1))*

L(X) = {s|s is a binary number divisible by 3}

58/66

Model Counting Linear Integer Arithmetic

What is this language?

X € (0](1(01*0)*1))*

L(X) = {s|s is a binary number divisible by 3}

1 0
QB T TED

Idea: DFA can represent (some) relations on sets of binary integers.
We can use similar techniques that we used for #String to solve
#LIA.

58/66

Model Counting Linear Integer Arithmetic

Quantifier-Free Linear Integer Arithmetic (Z, +, <).

59/66

Model Counting Linear Integer Arithmetic

Quantifier-Free Linear Integer Arithmetic (Z, +, <).
Constraints of the form:

Ax<B,xeZ

59/66

Model Counting Linear Integer Arithmetic

Quantifier-Free Linear Integer Arithmetic (Z, +, <).
Constraints of the form:

Ax<B,xeZ

It is possible to represent the solutions to a set of LIA constraints as a
binary multi-track DFA.

59/66

Binary Multi-track DFA
Solution DFA for LIA constraints.
» Read bits of x and y from most to least significant.

» Alphabet is a tuple of bits: (g’(>
Yy

Solution DFA for the constraint x > y.

60/66

Binary Multi-track DFA
Solution DFA for LIA constraints.
» Read bits of x and y from most to least significant.

» Alphabet is a tuple of bits: (2X>
Yy

Solution DFA for the constraint x > y.

@) () 6)- ()

Solutions of length n = solutions within bound 2"

60/66

Integer Grid Points Inside a Polytope, Z" N P

61/66

Integer Grid Points Inside a Polytope, Z" N P

» Barvinok Algorithm
» LattE Integrale

61/66

Model Counting Summary

Counting Techniques for Different Theories

» Boolean

62/66

Model Counting Summary

Counting Techniques for Different Theories
» Boolean

» Truth Table (Brute Force)
» DPLL

62/66

Model Counting Summary

Counting Techniques for Different Theories

» Boolean

» Truth Table (Brute Force)
» DPLL

» Strings

» Regular Expression with GFs
» DFA with Dynamic Programming, Matrix Multiplication, GFs

62/66

Model Counting Summary

Counting Techniques for Different Theories

» Boolean

» Truth Table (Brute Force)

» DPLL
» Strings

» Regular Expression with GFs

» DFA with Dynamic Programming, Matrix Multiplication, GFs
» Linear Integer Arithmetic

» Binary Multi-track DFA
» Polytope Methods

62/66

Review

Symbolic

Path Co

nstraints

Model
Counting

Probability

Distribution

Side Program
Channel Vulnerability

Ana

lysis Quantification

63/66

Review

Symbolic

Path Co

nstraints

Model
Counting

Probability

Distribution

Side Program
Channel Vulnerability

Ana

lysis Quantification

63/66

My Recent Research

v

CAV 2015: “Automata-based model counting for strings”.

FSE 2015: “Automatically computing path complexity of
programs”.

Internship Summer 2015 Carnegie: Mellon University / NASA

> Integration of string model counter with Java Symbolic Path
Finder(SPF)

2015-2016: Side channel analysis using SPF.

» FSE 2016: “Side channel analysis of segmented oracles.”
(Submitted)

v

v

v

64 /66

Questions?

Thank you.

65/66

66/66

	Symbolic Execution
	Software Verification
	Symbolic Execution
	Probabilistic Symbolic Execution
	SMT Solvers

	Side Channel Analysis
	Background and Information Theory
	Via Probabalistic Symbolic Execution

	Model Counting
	Boolean Logic
	Strings
	Linear Ineger Arithmetic

