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Abstract. Most common vulnerabilities in Web applications are due
to string manipulation errors in input validation and sanitization code.
String constraint solvers are essential components of program analysis
techniques for detecting and repairing vulnerabilities that are due to
string manipulation errors. For quantitative and probabilistic program
analyses, checking the satisfiability of a constraint is not sufficient, and it
is necessary to count the number of solutions. In this paper, we present a
constraint solver that, given a string constraint, 1) constructs an automa-
ton that accepts all solutions that satisfy the constraint, 2) generates a
function that, given a length bound, gives the total number of solutions
within that bound. Our approach relies on the observation that, using
an automata-based constraint representation, model counting reduces to
path counting, which can be solved precisely. We demonstrate the effec-
tiveness of our approach on a large set of string constraints extracted
from real-world web applications.

1 Introduction

Since many computer security vulnerabilities are due to errors in string ma-
nipulating code, string analysis has become an active research area in the last
decade [9, 40, 37, 17, 32, 3, 13, 39]. Symbolic execution is a well-known automated
bug detection technique which has been applied to vulnerability detection [28]. In
order to apply symbolic execution to analysis of string manipulating programs,
it is necessary to check satisfiability of string constraints [6]. Several string con-
straint solvers have been proposed in recent years to address this problem [18,
21, 19, 41, 23, 1, 24, 33].

There are two recent research directions that aim to extend symbolic exe-
cution beyond assertion checking. One of them is quantitative information flow,
where the goal is to determine how much secret information is leaked from a
given program [10, 30, 27], and another one is probabilistic symbolic execution
where the goal is to compute probability of the success and failure paths in or-
der to establish reliability of the given program [14, 7]. Interestingly, both these
approaches require the same basic extension to constraint solving: They require
a model-counting constraint solver that not only determines if a constraint is
satisfiable, but it also computes the number of satisfying instances.

In this paper, we present an automata-based model-counting technique for
string constraints that consists of two main steps: 1) Given a string constraint
and a variable, we construct an automaton that accepts all the string values for



that variable for which the string constraint is satisfiable. 2) Given an automaton
we generate a function that takes a length bound as input and returns the total
number of strings that are accepted by the automaton that have a length that
is less than or equal to the given bound.

Our constraint language can handle regular language membership queries,
word equations that involve concatenation and replacement, and arithmetic con-
straints on string lengths. For a class of constraints that we call pseudo-relational,
our approach gives the precise model-count. For constraints that are not in this
class our approach computes an upper bound. We implemented a model-counting
constraint solver based on the approach we present in this paper, and our exper-
iments demonstrate that it is effective and efficient when applied to thousands
of string constraints extracted from real-world web applications.

Related Work: Our inspiration for this work was the recently proposed model-
counting string constraint solver SMC [25]. Similar to SMC, we also utilize gener-
ating functions in model-counting. However, due to some significant differences in
how we utilize generating functions, our approach is strictly more precise than
the approach used in SMC. For example, SMC cannot determine the precise
model count for a regular expression constraint such as x ∈ (a|b)∗|ab, whereas
our approach is precise for all regular expressions. More importantly, SMC can-
not propagate string values across logical connectives which reduces its precision.
For example, for a simple constraint such as (x ∈ a|b) ∨ (x ∈ a|b|c|d) SMC will
generate a model-count range which consists of an upper bound of 6 and a lower
bound of 2, whereas our approach will generate the exact count which is 4. More-
over, SMC always generates a lower bound of 0 for conjunctions that involve the
same variable. So, the range generated for (x ∈ a|b) ∧ (x ∈ a|b|c|d) would be
0 to 2, whereas our approach generates the exact count which is 2. The set of
constraints we handle is also larger than the constraints that SMC can handle.
In particular, we can handle constraints with replace operation which is common
in server-side input sanitization code.

There has been significant amount of work on string constraint solving in re-
cent years [18, 21, 19, 28, 41, 23, 1, 24, 33]. Some of these constraints solvers bound
the string length [21, 28, 23] whereas our approach handles strings of arbitrary
length. None of these string constraint solvers provide model-counting functional-
ity. Our model-counting constraint solver is based on the automata-based string
analysis tool Stranger [40, 37, 39], which was determined to be the best in terms
of precision and efficiency in a recent empirical study for evaluating string con-
straint solvers for symbolic execution of Java programs [20]. In addition to check-
ing satisfiability, our constraint solver also generates an automaton that accepts
all possible solutions and provides model-counting capability. To the best of our
knowledge, our string constraint solver is the only tool that supports all these.
In addition to enabling quantitative and probabilistic analysis by model count-
ing, our constraint solver also enables automated program repair synthesis by
generating a characterization of all solutions [38, 2].



2 Automata Construction for String Constraints

In this section we discuss how to construct automata for string constraints.
Given a constraint and a variable, our goal is to construct an automaton that
accepts all strings, which, when assigned as the value of the variable in the given
constraint, results in a satisfiable constraint.

2.1 String Constraint Language

We define the set of string constraints using the following abstract grammar:

F → C | ¬F | F ∧ F | F ∨ F (1)

C → S ∈ R (2)

| S = S (3)

| S = S . S (4)

| len(S) O n (5)

| len(S) O len(S) (6)

| contains(S, s) (7)

| begins(S, s) (8)

| ends(S, s) (9)

| n = indexof(S, s) (10)

| S = replace(S, s, s) (11)

S → v | s (12)

R → s | ε | R R | R | R | R∗ (13)

O → < | = | > (14)

where C denotes the basic constraints, n denotes integer values, s ∈ Σ+ denotes
string values, ε is the empty string, v denotes string variables, . is the string
concatenation operator, len(v) denotes the length of the string value that is
assigned to variable v, and the string functions are defined as follows:

– contains(v, s)⇔ ∃s1, s2 ∈ Σ∗ : v = s1ss2
– begins(v, s)⇔ ∃s1 ∈ Σ∗ : v = ss1
– ends(v, s)⇔ ∃s1 ∈ Σ∗ : v = s1s
– n = indexof(v, s)⇔ (∃s1, s2 ∈ Σ∗ : len(s1) = n ∧ v = s1ss2) ∧

(∀i < n : ¬(∃s1, s2 ∈ Σ∗ : len(s1) = i ∧ v = s1ss2))
– v = replace(v′, s1, s2)⇔ (contains(v′, s1) ∧

(∃s3, s4, s5 ∈ Σ∗ : v′ = s3s1s4 ∧ v = s3s2s5 ∧ s5 = replace(s4, s1, s2) ∧
(∀s6, s7 ∈ Σ∗ : v′ = s6s1s7 ⇒ len(s6) ≥ len(s3)))) ∨
(¬contains(v′, s1) ∧ v = v′)

and the definitions of these functions when the string variable v is replaced with
a string constant are similar.

Given a constraint F , let VF denote the set of variables that appear in F . Let
F [s/v] denote the constraint that is obtained from F by replacing all appearances
of v ∈ VF with the string constant s. We define the truth set of the formula F
for variable v as JF, vK = {s | F [s/v] is satisfiable}.

We identify three classes of constraints: 1) Single-variable constraints are
constructed using at most one string variable (i.e., VF = {v} or VF = ∅), they
do not contain constraints of type (4), (6), and (11), and have a single variable



on the left hand side of constraints of type (3). 2) Pseudo-relational constraints:
are a set of constraints that we define in the next section, for which the truth
sets are regular (i.e., each JF, vK is a regular set). 3) Relational constraints are
the constraints that are not pseudo-relational constraints (truth sets of relational
constraints can be non-regular).

2.2 Mapping Constraints to Automata

A Deterministic Finite Automaton (DFA) A is a 5-tuple (Q,Σ, δ, q0, F ), where
Q = {1, 2, . . . , n} is the set of n states, Σ is the input alphabet, δ ⊆ Q×Q×Σ
is the state transition relation set, q0 ∈ Q is the initial state, and F ⊆ Q is the
set of final, or accepting, states.

Given an automaton A, let L(A) denote the set of strings accepted by A.
Given a constraint F and a variable v, our goal is to construct an automaton A,
such that L(A) = JF, vK.

Automata Construction for Single-Variable Constraints: Let us define an au-
tomata constructor function A such that, given a formula F and a variable v,
A(F, v) is an automaton where L(A(F, v)) = JF, vK. In this section we discuss
how to implement the automata constructor function A.

Let us give an example to demonstrate the automata construction algo-
rithm for single-variable constraints. Consider the following string constraint
F ≡ ¬(x ∈ (01)∗) ∧ len(x) ≥ 1 over the alphabet Σ = {0, 1}. Let us name
the sub-constraints of F as C1 ≡ x ∈ (01)∗, C2 ≡ len(x) ≥ 1, F1 ≡ ¬C1,
where F ≡ F1 ∧ C2. The automata construction algorithm starts from the
basic constraints at the leaves of the syntax tree (C1 and C2), and constructs
the automata for them. Then it traverses the syntax tree towards the root by
constructing an automaton for each node using the automata constructed for
its children (where the automaton for F1 is constructed using the automaton
for C1 and the automaton for F is constructed using the automata for F1 and
C2). Figure 1 demonstrates the automata construction algorithm on our running
example.

Let A(Σ∗),A(Σn),A(s), and A(∅) denote automata that accept the lan-
guages Σ∗, Σn, {s}, and ∅, respectively. We describe the construction of the
automaton A(F, v) recursively on the structure of the single-variable constraint
F as follows:

– case VF = ∅ (i.e., there are no variables in F ): Evaluate the constraint F . If
F ≡ true then A(F, v) = A(Σ∗), otherwise A(F, v) = A(∅).

– case F ≡ ¬F1: A(F, v) is constructed using A(F1, v) and it is an automaton that
accepts the complement language Σ∗ − L(A(F1, v)).

– case F ≡ F1 ∧ F2 or F ≡ F1 ∨ F2: A(F, v) is constructed using A(F1, v) and
A(F2, v) using automata product, and it accepts the language A(F1, v) ∩A(F2, v)
or A(F1, v) ∪ A(F2, v), respectively.

– case F ≡ v ∈ R: A(F, v) is constructed using regular expression to automata
conversion algorithm and accepts all strings that match the regular expression R.

– case F ≡ v = s: A(F, v) = A(s).
– case F ≡ len(v) = n: A(F, v) = A(Σn).
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Fig. 1. (a) The syntax tree for the string constraint ¬(x ∈ (01)∗) ∧ len(x) ≥ 1 and
(b) the automata construction that traverses the syntax tree from the leaves towards
the root.

– case F ≡ len(v) < n: A(F, v) is an automaton that accepts the language {ε} ∪
Σ1 ∪Σ2 ∪ . . . ∪Σn−1.

– case F ≡ len(v) > n: A(F, v) is constructed using A(Σn+1) and A(Σ∗) and then
constructing an automaton that accepts the concatenation of those languages, i.e.,
Σn+1Σ∗.

– case F ≡ contains(v, s): A(F, v) is an automaton that is constructed using A(Σ∗)
and A(s) and it accepts the language Σ∗sΣ∗.

– case F ≡ begins(v, s): A(F, v) is constructed using A(Σ∗) and A(s), and it accepts
the language sΣ∗.

– case F ≡ ends(v, s): A(F, v) is constructed using A(Σ∗) and A(s), and it accepts
the language Σ∗s.

– case F ≡ n = indexof(v, s): Let Li denote the language ΣisΣ∗. Automata that
accept the languages Li can be constructed using A(Σi), A(s), and A(Σ). Then
A(F, v) is the automaton that accepts the language ΣnsΣ∗− ({ε}∪L1∪L2∪ . . .∪
Ln−1) which can be constructed using A(Σn), A(s), A(Σ), and the automata that
accept Li.

Pseudo-Relational Constraints: Pseudo-relational constraints are multi-variable
constraints. Note that, using multiple variables, one can specify constraints with
non-regular truth sets. For example, given the constraint F ≡ x = y . y, JF, xK
is not a regular set, so we cannot construct an automaton precisely recognizing
its truth set. Below, we define a class of constraints called pseudo-relational
constraints for which JF, vK is regular.

We assume that constraint F is converted to DNF form where F ≡ ∨ n
i=1Fi,

Fi ≡ ∧ m
j=1Cij , and each Cij is either a basic constraint or negation of a basic

constraint. The constraint F is pseudo-relational if each Fi is pseudo-relational.

Given F ≡ C1 ∧ C2 ∧ . . . ∧ Cn, where each Ci is either a basic constraint
or negation of a basic constraint, for each Ci, let VCi denote the set of variables
that appear in Ci. We call F pseudo-relational if the following conditions hold:



1. Each variable v ∈ VF appears in each Ci at most once.
2. There is only one variable, v ∈ VF , that appears in more than one constraint Ci

where v ∈ VCi ∧ |VCi | > 1, and in each Ci that v appears in, v is on the left hand
side of the constraint. We call v the projection variable.

3. For all variables v′ ∈ VF other than the projection variable, there is a single
constraint Ci where v′ ∈ VCi ∧ |VCI | > 1.

4. All constraints Ci where |VCi | > 1, Ci is not negated in the formula F .

Many string constraints extracted from programs via symbolic execution
are pseudo-relational constraints, or can be converted to pseudo-relational con-
straints. The projection variable represents either the variable that holds the
value of the user’s input to the program (for example, user input to a web ap-
plication that needs to be validated), or the value of the string expression at a
program sink. A program sink is a program point (such as a security sensitive
function) for which it is necessary to compute the set of values that reach to
that program point in order to check for vulnerabilities.

For example, following constraint is a pseudo-relational constraint extracted
from a web application (regular expressions are simplified):

(x = y . z) ∧ (len(y) = 0) ∧ ¬(z ∈ (0|1)) ∧ (x = t) ∧ ¬(t ∈ 0∗)

Automata Construction for Pseudo-Relational Constraints: Given a pseudo-relational
constraint F and the projection variable v, we now discuss how to construct the
automaton A(F, v) that accepts JF, vK.

As above we assume that F is converted to DNF form where F ≡ ∨ n
i=1Fi,

Fi ≡ ∧ m
j=1Cij , and each Cij is either a basic constraint or negation of a basic

constraint.
In order to construct the automaton A(F, v) we first construct the automata

A(Fi, v) for each Fi where A(Fi, v) accepts the language JFi, vK. Then we com-
bine the A(Fi, v) automata using automata product such that A(F, v) accepts
the language JF1, vK ∪ JF2, vK ∪ . . . ∪ JFm, vK.

Since we discussed how to handle disjunction, from now on we focus on
constraints of the form F ≡ C1 ∧ C2 ∧ . . . ∧ Cn where each Ci is either a
basic constraint or negation of a basic constraint. For each Ci, let VCi denote
the set of variables that appear in Ci. If VCi

is a singleton set, then we refer to
the variable in it as vCi

.
First, for each single-variable constraint Ci that is not negated, we construct

an automaton that accepts the truth set of the constraint Ci, JCi, vCiK, using the
techniques we discussed above for single-variable constraints. If Ci is negated,
then we construct the automaton that accepts the complement language Σ∗ −
JCi, vCi

K. Let us call these automata A(Ci, vCi
) (some of which may correspond

to negated constraints).
Then, for any variable v′ ∈ VF that is not the projection variable, we con-

struct an automaton A(F, v′) which accepts the intersection of the languages
A(Ci, v

′) for all single-variable constraints that v′ appears in, i.e., L(A(F, v′)) =⋂
VCi

={v′} L(A(Ci, v
′)).

Next, for each multi-variable constraint Ci we construct an automaton that
accepts the language JCi, vK where v is the projection variable as follows:



– case Ci ≡ v = v′: A(Ci, v) = A(F, v′).
– case Ci ≡ v = v1 . v2: A(Ci, v) is constructed using the automata A(F, v1)

and A(F, v2) and it accepts the concatenation of the languages L(A(F, v1)) and
L(A(F, v2)).

– case Ci ≡ len(v) = len(v′): Given the automaton A(F, v′), we construct an
automaton Alen(F,v′) such that s ∈ L(Alen(F,v′))⇔ ∃s′ : len(s) = len(s′) ∧ s′ ∈
L(A(F, v′)). Then, A(Ci, v) = Alen(F,v′).

– case Ci ≡ len(v) < len(v′): Given the automaton A(F, v′) we find the length of
the maximum word accepted by A(F, v′), which is infinite if A(F, v′) has a loop
that can reach an accepting state. If it is infinite then A(Ci, v) = A(Σ∗). If not,
then given the maximum length m, A(Ci, v) is the automaton that accepts the
language {ε} ∪Σ1 ∪Σ2 ∪ . . . ∪Σm−1. Note that if m = 0 then A(Ci, v) = A(∅).

– case Ci ≡ len(v) > len(v′): Given the automaton A(F, v′) we find the length of
the minimum word accepted by A(F, v′). Given the minimum length m, A(Ci, v)
is the automaton that accepts the concatenation of the languages accepted by
A(Σm+1) and A(Σ∗), i.e, Σm+1Σ∗.

– case Ci ≡ v = replace(v′, s, s): Given the the automaton A(F, v′) we use the
construction presented in [40, 39] for language based replacement to construct the
automaton A(Ci, v).

The final step of the construction is to construct A(F, v) using the automata
A(Ci, v) where L(A(F, v)) =

⋂
v∈VCi

L(A(Ci, v)).

For pseudo-relational constraints the automaton A(F, v)) constructed based
on the above construction accepts the truth set of the formula F for the pro-
jected variable, i.e., L(A(F, v)) = JF, vK. However, the replace function has
different variations in different programming languages (such as first-match ver-
sus longest-match replace) and the match pattern can be given as a regular
expression. The language-based replace automata construction we use [40, 39]
over-approximates the replace operation in some cases, which would then result
in over-approximation of the truth set: L(A(F, v)) ⊇ JF, vK.

Automata Construction for Relational Constraints: For constraints that are not
pseudo-relational, we can extend the above algorithm to compute an over ap-
proximation of JF, vK. In relational constraints more than one variable can be
involved in multi-variable constraints which creates a cycle in constraint evalu-
ation.

Given a relational constraint in the form F ≡ C1 ∧ C2 ∧ . . . ∧ Cn, we
start with initializing each A(F, v) to A(Σ∗), i.e., initially variables are uncon-
strained. Then, we process each constraint as we described above to compute new
automata for the variables in that constraint using the automata that are already
available for each variable. We can stop this process at any time, and, for each
variable v, we would get an over-approximation of the truth-set A(F, v) ⊇ JF, vK.
We can state this algorithm as follows:

In order to improve the efficiency of the above algorithm, we first build a
constraint dependency graph where, 1) a multi-variable constraint Ci depends
on a single variable constraint Cj if VCj

⊆ VCi
, and 2) a multi-variable constraint

Ci depends on a multi-variable constraint Cj if VCj
∩ VCi

6= ∅. We traverse the
constraints based on their ordering in the dependency graph and iteratively refine



Algorithm 1 AutomataForConstraint(F ≡ C1 ∧ C2 ∧ . . . ∧ Cn)

1: for v ∈ VF do
2: A(F, v) = A(Σ∗);
3: end for
4: count = 0; done = false;
5: while count < bound ∧ ¬done do
6: for each C ∈ F and v ∈ VC do
7: construct A′ where L(A′) = L(A(F, v)) ∩ L(A(C, v));
8: L(A(F, v)) = A′;
9: end for

10: if none of the L(A(F, v)) changed during the current iteration of the while loop
then

11: done = true;
12: end if
13: count = count+ 1;
14: end while

the automata in case of cyclic dependencies. Note that, in the constructions we
described above we only constructed automaton for the variable on the left-hand-
side of a relational constraint using the automata for the variables on the right-
hand-side of the constraint. In the general case we need to construct automata
for variables on the right-hand-side of the relational constraints too. We do this
using techniques similar to the ones we described above. Constructing automata
for the right-hand-side variables is equivalent to the pre-image computations
used during backward symbolic analysis as discussed in [36] and we use the
constructions given there.

3 Automata-based Model Counting
Once we have translated a set of constraints into an automaton we can employ
algebraic graph theory [5] and analytic combinatorics to perform model counting.
In our method, model counting corresponds exactly to counting the accepting
paths of the constraint DFA up to a given length bound k. This problem can
be solved using dynamic programming techniques in O(k · |δ|) where δ is the
DFA transition relation [11, 16]. However, for each different bound, the dynamic
programming technique requires another traversal of the DFA graph.

A preferable solution is to derive a symbolic function that given a length
bound k outputs the number of solutions within bound k. To achieve this, we use
the transfer matrix method [31, 15] to produce an ordinary generating function
which in turn yields a linear recurrence relation that is used to count constraint
solutions. We will briefly review the necessary background first and then describe
the model counting algorithm.

Given a DFA A, consider its corresponding language L. let Li = {w ∈ L :
|w| = i}, the language of strings in L with length i. We can then write L =⋃

i≥0 Li. Further, define |Li| to be the cardinality of Li. Thus, the cardinality of
L can be computed by the sum of a series a0, a1, . . . , ai, . . . where each ai is the
cardinality of the corresponding language Li, i.e., ai = |Li|.



For example, recall the automaton in Fig. 1. Let Lx be the language over
Σ = {0, 1} that satisfies the formula (x 6∈ (01)∗ ∧LEN(x) ≥ 1). Then Lx can be
described by the expression Σ∗− (01)∗. In the language Lx, we have zero strings
of length 0 (ε 6∈ Lx), two strings of length 1 ({0, 1}), three strings of length 3
({00, 10, 11}), and so on. So in this case, adding a few more terms, our sequence
becomes a0 = 0, a1 = 2, a2 = 3, a3 = 8, a4 = 15, etc. It turns out that for any
length i, the number of strings in Lx

i , is given by a fairly simple 3rd order linear
recurrence relation:

a0 = 0, a1 = 2, a2 = 3
ai = 2ai−1 + ai−2 − 2ai−3 for i ≥ 3

(15)

In fact, using standard techniques for solving linear homogeneous recurrences,
we can derive a closed form solution to determine that

|Lx
i | = (1/2)(2i+1 + (−1)i+1 − 1). (16)

In the following discussion we give a general method based on generating func-
tions for deriving a recurrence relation and closed form solution that we can use
for model counting.

Generating Functions: Given the representation of the size of a language L as
a sequence {ai} we can encode each |Li| as the coefficients of a polynomial,
an ordinary generating function (GF). The ordinary generating function of the
sequence a0, a1, . . . , ai, . . . is the infinite polynomial [31, 15]

g(z) =
∑
i≥0

aiz
i (17)

Although g(z) is an infinite polynomial, in our application g(z) can be inter-
preted as the Taylor series of some finite rational expression. I.e., we can also
write g(z) = p(z)/q(z), where p(z) and q(z) are finite degree polynomials. If g(z)
is given as such a finite rational expression, each ai can be computed from the
Taylor series expansion of g(z):

ai =
g(i)(0)

i!
(18)

where g(i)(z) is the ith derivative of g(z). We write [zi]g(z) for the ith Taylor
series coefficient of g(z). Returning to our example, we can write the generating
function for Lx both as a rational function and as an infinite Taylor series poly-
nomial. The reader can verify the following equivalence by computing the RHS
coefficients via equation (18).

g(z) =
2z − z2

1− 2z − z2 + 2t3
= 0z0 + 2z1 + 3z2 + 8z3 + 15z4 + . . . (19)

Generating Function for a DFA: Given a DFA A and length k we can compute

the generating function gA(z) such that the kth Taylor series coefficient of gA(z)
is equal to |Lk(A)|.
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Fig. 2. (a) The original DFA A, and (b) the augmented DFA A′ used for model count-
ing.

The transfer-matrix method [31, 15] allows us to compute a generating func-
tion for the number of accepting paths for an arbitrary DFA. We first apply a
transformation and add an extra state, sn+1. The resulting automaton is a DFA
A′ with λ-transitions from each of the accepting states of A to sn+1 where λ is
a new padding symbol that is not in the alphabet of A. Thus, L(A′) = L(A) · λ
and furthermore |Li(A)| = |Li+1(A′)|. That is, the augmented DFA A′ preserves
both the language and count information of A. Recalling the automaton from
Fig. 1, the corresponding augmented DFA is shown in Fig. 2(b). (Ignore the
dashed λ transition for the time being.)

From A′ we construct the (n+ 1)× (n+ 1) transfer matrix T in the following
way. Now, A′ has n+1 states s1, s2, . . . sn+1. The matrix entry Ti,j is the number
of transitions from state si to state sj . Then the generating function for A is

gA(z) = (−1)n+1 det(I − zT : n+ 1, 1)

z det(I − zT )
, (20)

where (M : i, j) denotes the matrix obtained by removing the ith row and jth

column from M , I is the identity matrix, and detM is the matrix determinant.
The number of accepting paths of A with length exactly k, i.e. |Lk(A)|, is then
given by [zk]gA(z) which can be computed through symbolic differentiation via
equation 18.

Applying this to our running example, we show the transition matrix T , and
the terms (I − zT ) and (I − zT : n, 1). In the example, T1,2 is 1 because there
is a single transition from state 1 to state 2, T3,3 is 2 because there are two
transitions from state 3 to itself, T2,4 is 1 because there is a single (λ) transition
from state 2 to state 4, and so on for the remaining entries.

T =


0 1 1 0
1 0 1 1
0 0 2 1
0 0 0 1

 , I − zT =


1 −z −z 0
−z 1 −z −z
0 0 1− 2z −z
0 0 0 1

 , (I − zT : n, 1) =

−z −z 0
1 −z −z
0 1− 2z −z


Applying equation (20) results in the generating function

gA′(z) = −det(I − zT : n, 1)

z det(I − zT )
=

2z − z2

1− 2z − z2 + 2z3
. (21)



This is precisely the same GF that counts Li(A) given in equation (19). Suppose
we now want to know the number of solutions of length six. We can compute
the sixth Taylor series coefficient to find that Lx

6(A) = [z6]g(z) = 63.

Deriving a Recurrence Relation: We would like a way to compute the Taylor
series coefficients that is more direct than symbolic differentiation. Here we de-
scribe how a linear recurrence for these coefficients can be extracted from the
GF. Before we describe how to accomplish this in general, we first demonstrate
the procedure for our specific example. Combining equations (20) and (21) and
multiplying through by the denominator, we can write

2z − z2 = (1− 2z − z2 + 2z3)
∑
i≥0

aiz
i.

Expanding the sum for 0 ≤ i < 3 and collecting terms,

2z − z2 = a0 + (a1 − 2a0)z + (a2 − 2a1 − a0)z2 +
∑
i≥3

(ai − 2ai−1 − ai−2 + 2ai−3)zi.

Now by comparing the coefficient of zi on the LHS to the coefficient of zi on
the RHS, we have the set of equations

a0 = 0
a1 − 2a0 = 2
a2 − 2a1 − a0 = −1
ai − 2ai−1 − ai−2 + 2ai−3 = 0, for i ≥ 3

One can see that this results in the same solution given in equation (15).
This idea is easily generalized. Recall that g(z) = p(z)/q(z) for some finite

degree polynomials p and q. Suppose that the maximum degree of p and q is m.
With possibly some bi = 0 and ci = 0 , we can write

g(z) =
bmz

m + . . .+ b1z + b0
cmzm + . . .+ c1z + c0

=
∑
i≥0

aiz
i

Multiplying by the denominator, expanding the sum up to m terms, by com-
parison of coefficients we have the resulting system of equations which can be
solved for {ai : 0 ≤ i ≤ m} by standard linear algebra:

i∑
j=0

cjai−j =

{
bi, for 0 ≤ i ≤ m
0, for i > m

For any DFA A, once the recurrence relation has been derived, and since each
coefficient ai is associated with |Li(A)|, given a string length size k this gives
us a simple O(kn) method to compute |Li(A)| for any k. In addition, standard
techniques for solving linear homogeneous recurrence relations can be used to
derive a closed form solution for |Li(A)| [22].

Counting All Solutions within a Given Bound: The above described method gives
a generating function that encodes each |Li(A)| separately. Instead, we seek a



generating function that encodes the number of all solutions within a bound. To
this end we define the automata model counting function

MCA(k) =

k∑
i≥0

|Li(A)|. (22)

In order to compute MCA(k) we make a simple adjustment. All that is
needed is to add a single λ-cycle (the dashed transition in Fig. 2(b)) to the

accepting state of the augmenting DFA A′. Then Lk+1(A′) =
⋃k

i=0 Li(A) · λk−i
and the accepting paths of strings in Lk+1(A′) are in one-to-one correspondence

with the accepting paths of strings in
⋃k

i=0 Li(A). Consequently, |Lk+1(A′)| =∑k
i=0 |Li(A)| and soMCA(k) = |Lk+1(A′)|. Hence we can compute MCA using

recurrence for |Li(A
′)| with the additional λ-transition.

4 Implementation
We implemented the techniques we presented in earlier sections in a tool called
Automata-Based model Counter for string constraints (ABC). We implemented
ABC using the symbolic string analysis library provided by the Stranger tool [40,
37, 39]. We used the symbolic DFA representation of the MONA DFA library [8]
to implement the constructions described in Section 2. In MONA’s DFA library,
the transition relation of the DFA is represented as a Multi-terminal Binary
Decision Diagram (MBDD) which results in a compact representation of the
transition relation. ABC implementation supports more operations (such as trim,
substring) than the ones listed in Section 2 using constructions similar to the
ones given in that section.

ABC supports the SMT-LIB 2 language syntax. We specifically added sup-
port for CVC4 string operations [24]. In string constraint benchmarks provided
by CVC4, boolean variables are used to assert the results of subformulas. In
our automata-based constraint solver, we check the satisfiability of a formula by
checking if its truth set is empty or not. We eliminated the boolean variables
that are only used to check the results of string operations (such as string equiva-
lence, string membership) and instead substituted the corresponding expressions
directly. We converted if-then-else structures into disjunctions. We also searched
for several patterns between length equations and word equations to infer the
values of the string variables whenever possible (for example when we see the
constraint len(x) = 0 we can infer that the string variable x must be equal to
empty string). These transformations allow us to convert some constraints to
pseudo-relational constraints that we can precisely solve. If these transforma-
tions do not resolve all the cyclic dependencies in a constraint then the resulting
DFA may recognize an over-approximation of all possible solutions.

We implemented the automata-based model counting algorithm of Section
3 by passing the automaton transfer matrix to Mathematica for computing the
generating function, corresponding recurrence relation, and the model count for
a specific bound. Because the DFAs we encountered in our experiments typi-
cally have sparse transition graphs, we make use of Mathematica’s powerful and
efficient implementations of symbolic sparse matrix determinant functions [34].



5 Experiments

To evaluate ABC we experimented with a set of Java application benchmarks,
SMT-LIB 2 translation of Kaluza JavaScript benchmarks and several examples
from SMC distribution. In our experiments we compared ABC to SMC [25] and
CVC4 [24]. We ran all the experiments on an Intel I5 machine with 2.5GHz X 4
processors and 32 GB of memory running Ubuntu 14.041.

Table 1. Constraint Characteristics

Frequency of Operations Per 1000 Formulas
Benchmarks # Constraints ∈ . = len replace indexof contains begins ends substring

ASE 116164 0.42 386.10 129.39 382.54 639.28 4.11 7.52 16.91 7.51 41.17

Kaluza Small 368433 30.29 93.89 224.87 46.84 0 0 0 0 0 0

Kaluza Big 5138323 38.12 129.53 164.64 60.46 0 0 0 0 0 0

Table 1 shows the frequency of string operations from our string constraint
grammar that are contained in the ASE, Kaluza Small, and Kaluza Big Bench-
mark sets. ASE benchmarks are from Java programs and represent server-side
code [20]. The Kaluza benchmarks are taken from JavaScript programs and
represent client-side code [29]. All three benchmarks have regular expression
membership (∈), concatenation (.), string equality (=), and length constraints.
However, the ASE benchmark contains additional string operations that are
typically used for input sanitization, like replace and substring.

Java Benchmarks. String constraints in these benchmarks are extracted
from 7 real-world Java applications: Jericho HTML Parser, jxml2xql (xml-to-sql
converter), MathParser (math expression solver), MathQuizGame (math study
tool), Natural CLI (a natural language command line tool), Beasties (a com-
mand line game), HtmlCleaner (html to clean xml converter), and iText (PDF
library) [20]. These benchmarks represent server-side code and employ many
input-sanitizing string operators such as replace and substring as seen in Table 1.
These string constraints were generated by extracting program path constraints
through dynamic symbolic execution [20].

In [20] an empirical evaluation of several string constraint solvers is presented.
As a part of this empirical evaluation, the authors use the symbolic string anal-
ysis library of Stranger [40, 37, 39] to construct automata for path constraints
on strings. In order to evaluate the model counting component of ABC, we ran
their tool on the 7 benchmark sets and output the resulting automata when-
ever the constraint is satisfiable. Out of 116,164 string path constraints, 66,236
were found to be satisfiable and we performed model counting on those cases.
The constraints in Java benchmarks are all single-variable or pseudo-relational
constraints. The resulting automata do not have any over-approximation caused
by relational constraints. As a measure of the size of the resulting automata,
we can give the number of BDD nodes used in the symbolic transition relation
representation of MONA. The average number of BDD nodes for the satisfiable
path constraints is 69.51 and the size of the each BDD node is 16 bytes. For these
benchmarks our model-counter is very efficient, where the average running time
of model counter per path constraint is 0.0015 seconds and the model-counting

1
Results of our experiments are available at http://www.cs.ucsb.edu/˜vlab/ABC/



function that our model-counter produces is precise, i.e., gives the exact count
for any given bound.

SMC and CVC4 are not able to handle the constraints in this data set since
they do not support sanitization operations such as replace.

Table 2. Log scaled comparison between SMC and ABC

bound
SMC

lower bound
SMC

upper bound
ABC
count

nullhttpd 500 3752 3760 3760
ghttpd 620 4880 4896 4896
csplit 629 4852 4921 4921
grep 629 4676 4763 4763
wc 629 4281 4284 4281
obscure 6 0 3 2

SMC Examples. For a comparative evaluation of our tool with SMC, we
used the examples that are listed on SMC’s web page. We translated the 6 exam-
ple constraints listed in table 2 into SMT-LIB2 language format that we support.
We inspected the examples to confirm that they are pseudo-relational, i.e., our
analysis generates a precise model-counting function for these constraints. We
compare our results with the SMC results reported in the SMC’s web page. The
first column of the Table 2 shows the file names of these example constraints.
The second column shows the bounds used for obtaining the model counts. The
next two columns show the log-scale SMC lower and upper bound values for
the model counts. The last column shows the log-scale model count produced by
ABC. We omit the decimal places of the numbers to fit them on the page. For all
the cases ABC generates a precise count given the bound. ABC’s count is exactly
equal to SMC’s upper bound for four of the examples and is exactly equal to
SMC’s lower bound for one example. For the last example ABC reports a count
that is between the lower and upper bound produced by SMC. Note that these
are log scaled values and actual differences between a lower and an upper-bound
values are huge. Although SMC is unable to produce an exact answer for any of
these examples, ABC produces an exact count for each of them.

JavaScript Benchmarks. We also experimented with Kaluza benchmarks
which were extracted from JavaScript code via dynamic symbolic execution [29].
These benchmarks are divided to a small and large set based on the sizes of
the constraints. These benchmarks have been used by both SMC and CVC4
tools. ABC handles 19,731 benchmark constraints in satisfiable small set with
an average of 0.32 seconds per constraint for model counting, whereas SMC
handles 17,559 constraints with an average of 0.26 seconds per constraint. ABC
handles and 1,587 benchmark constraints in satisfiable big set with an average
of 0.34 seconds per constraint for model counting, whereas SMC handles 1,342
constraints with an average of 5.29 seconds per constraint. We were not able to
do a one-to-one timing and precision comparison between ABC and SMC for
each constraint due to an error in the SMC data file (the mapping between file
names and results is wrong).

Satisfiability Checking Evaluation. We ran ABC on SMT-LIB 2 trans-
lation of the full set of JavaScript benchmarks. We put 20-seconds CPU timeout
limit to our solver. Table 3 shows the comparison between ABC and CVC4 [24]



Table 3. Constraint-Solver Comparison

ABC CVC4 ABC CVC4 ABC CVC4 ABC CVC4 ABC CVC4
sat - sat unsat-unsat sat-unsat unsat-sat sat-timeout

sat/small 19728 3 0 0 0
sat/big 1587 0 0 0 0
unsat/small 8139 3013 74 0 0
unsat/big 3419 5904 2385 0 2359

constraint solver based on the CVC4 results that are available online. The first
column shows the initial satisfiability classification of the data set by the cre-
ators of the benchmarks [29]. The next two columns show the number of results
that ABC and CVC4 agree. The last three columns show the cases where ABC
and CVC4 differ. Note that, since ABC over-approximates the solution set, if
the given constraint is not single-valued or pseudo-relational, it is possible for
ABC to classify a constraint as satisfiable even if it is unsatisfiable. However, it
is not possible for ABC to classify a constraint unsatisfiable if it is satisfiable.
Out of 47,284 benchmark constraints ABC and CVC4 agree on 41,793 of them.
As expected ABC never classifies a constraint as unsatisfiable if CVC4 classifies
it as satisfiable. However, due to over-approximation of relational constraints,
ABC classifies 2,459 constraints as satisfiable although CVC4 classifies them as
unsatisfiable. A practical approach would be to use ABC together with a satisfi-
ability solver like CVC4, and, given a constraint, first use the satisfiability solver
to determine the satisfiability of the formula, and then use ABC to generate its
trust set and the model counting function.

The average automata construction time for big benchmark constraints is
2.43 seconds and for small benchmark constraints is 0.001 seconds. ABC never
timeouts and reports that the constraint is satisfiable for 2359 constraints that
CVC4 timeouts. ABC is unable to handle 672 constraints and for these 672
constraints CVC4 timeouts in 29 of them, reports unsat for 246 of them, and
reports sat for 397 of them. There are also a few thousand constraints from the
Kaluza benchmarks that CVC4 is unable to handle.

6 Conclusions and Future Work

We presented a string constraint solver that, given a constraint, generates: 1)
An automaton that accepts all solutions to the given string constraint; 2) A
model-counting function that, given a length bound, returns the number of solu-
tions within that bound. Our experiments on thousands of constraints extracted
from real-world web applications demonstrates the effectiveness and efficiency
of the proposed approach. Our string constraint solver can be used in quanti-
tative information flow, probabilistic analysis and automated repair synthesis.
We plan to extend out automata-based model-counting approach to Presburger
arithmetic constraints using an automata-based representation for Presburger
arithmetic constraints [35, 4].
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