Automata-based Model Counting
for String Constraints

Abdulbaki Aydin, Lucas Bang, Tevfik Bultan
https:/ /vlab.cs.ucsb.edu

Model Counting for String Constraints

INPUT

string
constraint:

C ———

-

_

Automata-Based
model Counter
(ABC)

~

J

OUTPUT

counting
function:

— > [, <— lengthbound: k

’

of strings with length < k
for which C evaluates to true

solve it, Will Hunting?

3 {

— g

- =)

Motivation

» Why care about string constraints?

String constraint solvers are essential for program analysis

Symbolic execution [Saxena et al., S&P'10]
Symbolic verification [Alkhalaf et al., ICSE'12]

» Why care about model counting?

Quantitative information flow analysis

[Clark et al., JCS'O7] [McCamant et al., PLDI'O8] [Phan et al.,
SEN'12] [Smith et al., FOSSACS'09]

Probabilistic symbolic execution
[Borges et al., PLDI'14] [Flieri et al., ICSE"13]

Outline

» Automata-based Constraint Solver
String constraint language
Constraint types
Automaton construction

» Automata-based Model Counting
Generating functions
Recurrences

» Experimental Results
» Conclusion

String Constraint Language

F—->C|-F|FAF|FVF
C—->SeEeR

S=S

S=S.S
LEN(S) On

LEN(S) O LEN(S)
CONTAINS(S, s)
BEGINS(S, s)
ENDS(S, s)

n = INDEXOF(S, s)
S = REPLACE(S, s, s)
S—>v]|s
R—->s|eg|RR|R|R|R*
O-=|<|>|<L |2

D _
(2)
(3)
(4)
(5)
(6)
(7)
(8)
9)
(10)

(11)
(12)
(13)
(14)

sfugensuo:

JILUOLY

Constraint Types

» Single variable constraints
F=-(x€e((01)*)ALEN(x) > 1
» Pseudo-relational constraints

(x=y.z) A(LEN(y) =0) A ﬁ(z € (Oll)) A
(X = t) /\—l(t (S O*)

» Relational constraints
(x =y.z) A=(x = y.t) A (CONTAINS t z)

A (LEN(y) >5) A=(z € (0]1)) A —(t € 0)

Automata Construction

F=-(xe(01*)ALEN(x) > 1

0,1
2]
A(F, z) c.@ 0.(3)
1
7 ™~
0,1 0,1
(4)
A(Fy,) e.@ 0.(3) A(Ca, 1) 0,1
1

A(C1,)

Automata Construction (Multi-variable)

Pick a projection variable

Generate a dependency graph between atomic constraints based on the
variables that appear in them

» Solve constraints in topological order
» Cycles require iteration (which may not converge) leading to approximation

(x =y.2) A=(x =y.t) A (CONTAINS t z) A (LEN(y) > 5) A=(z € (0]1)) A = (¢t € 0%)

>
<
>

Outline

>

» Automata-based Model Counting
Generating functions
Recurrences

» Experimental Results
» Conclusion

10

Automata-based Model Counting

» Converting string constraints to automata reduces the model

g counting problem to path counting problem in graphs
0 F=-(x€(OD*)ALEN(x) =1
0
0,1
1 @ ’
1

» We will generate a function f (k)
Given length bound k, it will count the number of strings with length k.

f(0)=0, {}
f(1) =2,{0,1}
£(2) = 3,{00,10,11}

l

Path Counting
F==-(x€e(1)')ALEN(x) > 1

>

12

01
1011
0021})’

0000

f(0)=0

T? =

fQ) =2

f(2)=3

011481,

10157

~loo168

0000
f(3)=8

Counting Paths w Generating Functions

» We can compute the generating function, g(z), for a
DFA from the associated matrix

0110]
1011
0021

0000

Jdet(l —zT:n+1,1) 27 — z°
zxdet(l —zT) 1—2z—2z%+ 223

g9(z) = (—1)

13

Counting Paths w Generating Functions

>

27 — 72

1—2z—2z%2+42273

g(z) =

» Each f (i) can be computed by Taylor expansion of
9(2)

g , g , g@0) P
g(z) = 0] zY% + T zH+— o + -+ my

g(z) = 02z° 4+ 221 + 322 4+ 823 +15z* + ---
9@ = f(O2° + fF(D)7" + f(2)7* + f()Z* + f(4)z* + -+

14

Recurrence Relation

» An easier way to compute number of paths

» We can extract a homogeneous linear recurrence
from g(z) using linear algebraic techniques

fQ0)=0,f(1)=21(2)=3
fk) =2f(k=1)+ f(k—2)—2f(k—3)

15

Good job Will Hunting!

4/,7 1 Mo G /"’//1
. ,1%{:(,,41//// //I///u//;(/

2 [ng amidkere groisy Mt mamber)/ S shep

: /
« & "- ™ ¢ s,-' St /"7 a%"‘///) /f'}/(f"

/ ’ /
Ay are /"/ warr /"V’ L

This is correct.
Who did this ?

Path Counting Methods

» Complexities of different path counting methods
n is the number of states
k is the length bound

Matrix Dynamic
Exponentiation Programming

Construction
Time

Evaluation
Time

17

Outline

>

» Experimental Results
» Conclusion

18

Experimental Evaluation

» We implemented the techniques described as a tool called
Automata-Based model Counter (ABC)

» We conducted experiments on 4 benchmark sets
» Ajava benchmark with wide range of string operations
» Kaluza Small & Kaluza Big benchmarks for satisfiability check
» SMC examples for direct comparison between SMC and ABC

Frequency of Operations Per 1000 Formulas

ASE 0.42 386.10 129.39 382.54 716.5
Kaluza Small 30.29 93.89 224.87 46.84 0
Kaluza Big 38.12 129.53 164.64 60.46 0

19

Satisfiability Check Comparison

» Compared with CVC4
Used SMT-lib format of Kaluza benchmarks from CVC4

ABC-CVC4 | ABC-CVC4 ABC-cvcs Y ABC-CVC4) ABC-CVC4
sat-sat unsat-unsat sat-unsat unsat-sat | sat-timeout
sat/small 19728 3 0 0 0
sat/big 1587 0 0 0 0
unsat/small 8139 3013 74 0 0
unsat/big 3419 5904 2389\ O) 2359
Constraint solver performance for Kaluza benchmarks
ABC Avg. Time (seconds) CVC(C4 Avg. Time (seconds)
big 0.44 0.01
small 0.01 0.015

20

Model Counting Comparison
» Compared with SMC

Max string
length k

nullhttpd
ghttpd
csplit
grep

wC

obscure

Model counter performance for satisfiable constraints in the Kaluza

benchmarks

ABC Avg. Time (seconds)

big
small

21

500
620
629
629
629

6

SMC lower
bound (log)

3752
4880
4852
4676

SMC upper
bound (log)

4281

0

SMC Avg. Time (seconds)

count (log)
3760 3760
4896 4896
4921 4921
\4763 4763)
4284 4281
3 2
5.29
0.26

ASE Benchmark

» Extracted from 7 real-world server-side Java
applications

Constraints were generated by extracting program path
constraints through dynamic symbolic execution

SMC and CVC4 are not able to handle ASE benchmark; they
do not support sanitization operations such as replace

of satisfiable path Avg. # of BDD Nodes Avg. Running Time
constraints (each 16 bytes) (seconds)

66236 69.51 0.0015

We use MONA automata package where the transition
relation is stored as a decision diagram

22

Conclusion

» Presented a model-counting string solver

Generates an automaton that accepts all solutions to a given
constraint

Generates a model-counting function that, given a length
bound, returns the number of solutions within that bound

» Future work

23

Extending ABC with new operations (e.g., lastindexOf)
Extending ABC with Presburger arithmetic

Better approximation of relational constraints with
multi-track automata

Thanks

Recurrence Relation

» An easier way to compute number of paths

» We can extract a linear recurrence from g(z) using
linear algebraic techniques

fQ0)=0,f(1)=21(2)=3
fk) =2f(k=1)+ f(k—2)—2f(k—3)

» A closed form solution can also be obtained from the
recurrence relation

2k+1+(_1)k+1_1
2

f(k) =

25

Path Counting w Generating Functions
> F=-=-(x€e (1)) ALEN(x) > 1

» Language over Y that satisfy F: L* = ¥* — (01)*

» Let L ={w € L*: |w| =i}, f@) = |L]]

» |L*]is sum of the series f(0), f(1), f(2), f(3) ...

f(0)=0,f(1)=2f(2)=3f(3)=8..
» We can encode each f(i) in a power series as a
coefficient

9(2) = f(0)z° + F(D)z + f(2)z2 + F(3)z3 + f(4)z* + -
g(2) = 0z° + 2z + 322 + 823 + 15z* + -

26

