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Abstract—We present symbolic analysis techniques for detect-
ing vulnerabilities that are due to adaptive side-channel attacks,
and synthesizing inputs that exploit the identified vulnerabilities.
We start with a symbolic attack model that encodes succinctly
all the side-channel attacks that an adversary can make. Us-
ing symbolic execution over this model, we generate a set of
mathematical constraints, where each constraint characterizes
the set of secret values that lead to the same sequence of side-
channel measurements. We then compute the optimal attack,
i.e, the attack that yields maximum leakage over the secret, by
solving an optimization problem over the computed constraints.
We use information-theoretic concepts such as channel capacity
and Shannon entropy to quantify the leakage over multiple runs
in the attack, where the measurements over the side channels
form the observations that an adversary can use to try to infer
the secret. We also propose greedy heuristics that generate the
attack by exploring a portion of the symbolic attack model in each
step. We implemented the techniques in Symbolic PathFinder and
applied them to Java programs encoding web services, string
manipulations and cryptographic functions, demonstrating how
to synthesize optimal side-channel attacks.

Index Terms—Side-Channel Attacks; Quantitative Information
Flow; Cryptography; Multi-run Security; Symbolic Execution;
Satisfiability Modulo Theories; MaxSMT; Model Counting

I. INTRODUCTION

Due to the widespread use of computers and other smart
devices in every aspect of modern life, many software systems
have access to secret information ranging from financial and
medical records of individuals to trade secrets of companies
and military secrets of states. Confidentiality of secret informa-
tion is critical, however it is hard to achieve if an adversary
is able to mount side-channel attacks [1], [2]. Side-channel
attacks aim to recover secrets by observing non-functional
aspects of program behavior such as execution time, network
traffic or memory usage.

In this paper, we propose symbolic analysis techniques for
detecting and measuring side-channel vulnerabilities and for
synthesizing inputs that exploit the identified vulnerabilities.
We consider side-channel attacks that span multiple runs and
are adaptive; at each run, the adversary chooses a value
for the public input, taking into account the outcomes of
previous runs. This corresponds to the typical case of an
attacker that tries to gradually uncover a secret that is constant
across program runs, such as the secret key used in an
encryption/decryption algorithm.

We start with a simple, generic symbolic attack model that
encodes all the side-channel attacks that an adversary can

make, up to some specified number of steps. We analyze this
model using symbolic execution [3], a well known program
analysis technique that computes program behaviors in terms
of mathematical constraints over the specified symbolic inputs.
The generated constraints describe partitions on the secret
values, where each block in a partition contains the secrets
that lead to the same sequence of side-channel measurements.

We compute the optimal attack, i.e. the attack that results
in maximum leakage over the secret, by solving optimizations
problems over the computed constraints. We use information-
theoretic concepts such as channel capacity and Shannon
entropy to quantify the information leakage over multiple runs
in the attack, where the measurements over the side channels
form the observations that an adversary can use to try to
infer the secret. Solving the optimization problems produces
a maximal assignment for the public inputs (“the attack”)
over the set of constraints obtained with symbolic execution,
yielding maximal leakage i.e. any other assignment produces
less leakage.

The optimal attack reveals the most vulnerable behaviors
of the program and the public (low) inputs that trigger those
behaviors. This information can be used by the developers to
understand the attacks and defend against them. For example,
the attack trees that we generate automatically can be used as
attack signatures to filter actual attacks during operation. Our
work is also relevant in the context of the single-run attacker
model [4], [5], [6], [7], [8], [9], [10], [11]. Most previous work
addresses the computation of information leakage assuming
the low input is fixed and do not address the problem of gen-
erating the low inputs that reveal the side channels. However,
in most realistic scenarios different low inputs yield different
leakages and thus the choice of the low inputs is important.
Our work can be used to automatically generate low inputs
that reveal side channels with the largest leakage.

We propose different approaches for synthesizing opti-
mal attacks, where optimality is defined with respect to
the information-theoretic measure that we use. In the first
approach (MaxCC), we synthesize optimal attacks with respect
to channel capacity using MaxSMT solving [12]. Channel
capacity only takes into account the number of observations
generated by the system. We also consider the harder problem
of computing the inputs that maximize leakage with respect
to entropy. This measure can give more precise estimates
on the leakage but it is more difficult to compute, since it
involves not only the number of observations that are made



but also the sizes of the blocks in the induced partitions on
the secret. We introduce a novel algorithm (MaxHMarco) for
the precise computation of the optimal attack with respect
to entropy, based on a solution of the Maximal Satisfiable
Subsets problem [13]. The algorithm is general and works
for any notion of entropy which is monotonic with respect to
refinement ordering of partitions. We compare this algorithm
with a third approach that we propose (MaxHNumeric) which
synthesizes adaptive attacks again with respect to entropy,
using parameterized model counting over the blocks in the
partions on the secret followed by numeric optimization
methods. The parameterized computations can be used for
optimizing other measures such as guessability or Min entropy.
MaxHNumeric can scale better with respect to the domain size
but is not guaranteed to find an optimal attack. However, we
found that in practice, MaxHNumeric computes attacks that
are often close to optimal.

Since full exploration of the symbolic attack model can be
computationally expensive, we propose greedy heuristics that
generate the attack by exploring a portion of the symbolic
attack model in each step. We show experimentally that the
greedy heuristics generate optimal attacks for side channels
with “segmented oracles”, where the adversary is able to
explore each segment of a secret independently. These side
channels are typically found in password checking or file com-
pression applications that use early termination optimization.
Further, we are able to automatically generate optimal attacks
for programs with side-channels that allow a binary search or
a range search within the domain of the secret.

To deal with the imprecision that is inherent in the side-
channel measurements, we also introduce a layer of abstrac-
tion in the cost model that we use for computing the side-
channel measurements. The abstraction groups together the
observations that may be indistinguishable to the adversary,
resulting in a more realistic, coarser cost model and improving
the scalability of the analysis, while enabling the discovery of
real vulnerabilities.

We have implemented the proposed techniques in the Sym-
bolic PathFinder (SPF) tool [14] and show their merits in
the context of side-channel analysis for complex programs
encoding web services, string manipulations and cryptographic
functions, demonstrating how our techniques compute tight
bounds on side-channel leakage and synthesize optimal side-
channel attacks. Our implementation is general and can be
easily implemented in other symbolic execution tools, for
different languages.

II. MULTI-RUN ADAPTIVE ATTACKS

Let P (H,L) be a deterministic program, where H denotes
the high input (secret) and L the low input (public). Similar
to previous work [15], we assume that the attacker can make
one side-channel observation at a time and that there are no
errors in the measurements. We also assume that the attacker
knows the implementation of P . These are strong assumptions
that are justified since we are interested in computing the
“strongest” possible attack.

In general, the attacker can not learn all the secret from
only one round of observation. We are interested in computing
the low values for estimating the maximum leakage after the
attacker runs the program multiple times and makes multiple
side-channel observations to gradually uncover information
on the secret. One can try to infer this maximal leakage
based on the computation of leakage on a single run, but
this computation would not be accurate, since the attacker can
learn from previous tries and will try to pick different low
values that uncover different information in each round.

1) Attacker Model: The attacker can be defined as a (par-
tial) function A that takes the history of observations as input
and returns the low value l to be used in the next attack step.

We can model the interaction, up to k steps, between the
attacker and the program as a system S = (A,P, k, cost(·)),
where the attacker A generates values of l for multiple
executions of program P in order to determine the secret h.
Parameter cost(·) determines the side-channel observations for
program executions.

We assume that each path can give only one observable.
Our work is done in the context of a project that targets
side-channels for Java programs, where this assumption holds.
Our work is also applicable to more general quantitative
information flow analysis where the same assumption holds.

System S is defined as follows:

Procedure: A k-step adaptive attack S =
(A,P, k, cost(·))

1 seq ← ∅
2 for i← 1 to k do
3 l← A(seq)
4 o← cost(P (h, l))
5 seq ← append(seq, o)

The attacker is adaptive as it picks a new low value with
each observation made. In contrast, a non-adaptive attacker
would only pick one low value at each attack step, regardless
of the observations made in previous runs, i.e. the attack
function A would be a function of attack step i (and the low
value would be l← A(i)). Thus adaptive attacks can be more
powerful, since the attacker can pick different low values at
same step.

2) The Attacker’s Knowledge: Suppose that the attacker
observed o1, o2, .. ok after picking values L1, L2 .. Lk

and executing the program k times. The initial domain of
the secret is D. At each step i, the attacker learns that the
secret leads to oi under Li and revises the domain to contain
those secrets that are consistent with this new observation. The
attacker successfully reveals the secret when she can deduce
the domain to consist of only one value. However, if after an
attack step, the revised domain stays the same, the adversary
does not learn new information with this low input.

In general, an adaptive attack can lead to different sequences
of observations, depending on the secret value. Following [15]
we say that two secrets H and H ′ are indistinguishable under



i n t s e c r e t ;
i n t p u b l i c i n p u t ;

i f ( s e c r e t >= p u b l i c i n p u t )
. . . pe r fo rm some c o m p u t a t i o n ; / / c o s t =1

e l s e
. . . pe r fo rm some o t h e r c o m p u t a t i o n ; / / c o s t =2

Fig. 1. Illustrative Example

the attack A (written as H ≈ H ′) if for all observation
sequences seq, cost(P (H,A(seq))) = cost(P (H ′, A(seq))).

Proposition 1: The indistinguishability relation under attack
A forms an equivalence relation on the secret values.

Proof: Reflexivity, symmetry and transitivity are easy to
check because the program is deterministic.

Thus the attack A induces a partition on the secret values.
Each block in the partition contains the secret values that lead
to the same observations, under an attack A. Furthermore, the
size of the partition is equal to the number of different k-sized
observation sequences produced under A.

Given the system S = (A,P, k, cost(·)) we can extend the
classical definitions of Channel Capacity and Shannon entropy
to reasoning about sequences of observations in S (henceforth
called k-observables).

The channel capacity theorem [16], [17] states that the
leakage for a program (in number of bits on the secret) is
always less than or equal to the log of the number of possible
distinct observations that an attacker can make. The result
states in essence that leakage computation reduces to counting
the number of different observable outputs for the program.

Thus, if running system S for a particular attack A results
in NkObs k-observables, the information leaked by P after k
runs is:

Information leaked after k runs ≤ CCk(P ) = log2(NkObs)

For deterministic systems, the Shannon entropy gives a
measure of the leakage of the side-channel, corresponding also
to the observation gain (on the secret) after an observation. We
extend this result to multiple observations as follows. For each
sequence of observations oki = 〈o1, o2, ..ok〉, let p(oki ) denote
the probability of observing oki . Then the Shannon entropy is:

Hk(P ) = −
∑
oki

p(oki ) log2(p(oki )) (1)

Different attacks A lead to different leakage. The most
powerful attacker will want to pick the low values that will
leak the most information about the secret. In particular
we are interested in synthesizing function A that maximizes
Channel Capacity or Shannon entropy. Our work generalizes
to other information theoretic measures such as computing the
probability of guessing the secret or the Min entropy.

3) Example: We illustrate our approach on the example
from Fig. 1. The program performs two kinds of operations (of
costs 1 or 2) according to the branching condition in the code.
Assume that the domain of the secret is D = 1..6. Consider
a 2-step attack that picks low value 4 in the first step, low

value 5 after seeing cost 〈1〉 and low value 3 after seeing
cost 〈2〉, i.e. A(∅) = 4, A(〈1〉) = 5, A(〈2〉) = 3. Suppose
the attacker first observes 〈1〉. She can then deduce that the
value of the secret is greater or equal than 4, thus narrowing
down the possible values of the secret to {4, 5, 6}. Running
the program again (on A(〈1〉) = 5) and after observing 〈2〉,
she can deduce that the secret is less than 5, narrowing down
the possible secret values to {4}. Thus the attacker is able to
fully recover the secret along this path. If on the other hand
the second observation is 〈1〉, this means that the secret is
greater or equal than 5, so the attacker is able to narrow down
the secret to two values {5, 6} etc.

4) Adaptive Attacks as Games: As mentioned We consider
the case of adaptive attacks, where the attacker can take into
account the outcomes of his previous queries, when deciding
which low value to pick for the next query. The attacker’s
strategy is modelled as (partial) function A from sequence of
observables (history) to low inputs (the next input). Note that
the strategy is deterministic, since at each step the attacker
decides on a unique next low value, according to its strategy.

We can see the above defined function as a strategy in a
two players zero sum game (played between an attacker and
a defender) defined as follows: The attacker moves are low
inputs and an attacker strategy is a partial function A as defined
above. The defender moves are observations: given a low input
played by the attacker the defender plays the observable which
is obtained by running the program on that low input. The
(unique) defender strategy in this game is the function from
low inputs to observables as prescribed by the program. A
state of the game is a pair of strategies (one for the defender
and one for the attacker). A payoff in this game is a function
from a state of the game to real numbers.

Notice that the defender strategy is unique hence in defining
the payoff we only need to consider the attacker strategy.
Given an attacker strategy we can uniquely associate to that
strategy a payoff given by the channel capacity or Shannon
entropy defined in the previous section. Note that the indis-
tinguishability relation under strategy A can be computed as
the least upper bound computed over the indistinguishability
relations induced by each low input defined by the strategy A;
thus the payoff captures complete information for the strategy.

We seek to study the strategies in this game that have the
highest payoff. As the defender strategy is unique such strate-
gies only depend on the attacker and are the pure strategies
with the highest payoff for the attacker or a mixture of such
strategies.

Clearly these strategies are optimal, i.e. cannot be improved
upon, with respect to the payoff function. Notice that opti-
mality here is defined only with respect to a chosen payoff
function and so it varies changing said function.

If we consider for example the channel capacity payoff
then an optimal attacker strategy has a simple information
theoretical semantics: faced with a set of possible secrets and
and a number of partitions over this secret (each partition
provided by a particular choice of a sequence of low inputs)
the adversary chooses a maximal partition over the k runs



because this is one providing maximal information in that
number of runs. However that choice is only optimal up to k
runs, i.e. if the game over k+1 runs we could find a partition,
and hence a strategy improving wrt the same criteria.

III. SYMBOLIC EXECUTION FOR ATTACK SYNTHESIS

We use symbolic execution to synthesize the attack that
maximizes Channel Capacity and Shannon Entropy. Symbolic
execution is a program analysis technique that executes a
program on symbolic inputs, representing multiple concrete
inputs. The result of the analysis is a set of symbolic paths each
with a path condition, which is a conjunction of constraints
over the symbolic inputs that characterizes all the concrete
inputs that follow that path. To deal with loops and recursion
a bound is put on the analysis depth.

We first create a symbolic model of the attack scenario
described in the previous section. We model the secret using
a symbolic variable. Furthermore, since we do not know in
advance the low values that give the maximal leakage, we
model them as fresh symbolic variables, as well. The resulting
system, Ssym is described below:

Procedure: Symbolic model of a k-step adaptive attack:
Ssym(P, k, cost(·))

1 seq ← ∅
2 h← makeSymbolic(′′h′′)
3 for i← 1 to k do
4 l← makeSymbolic(N (seq))
5 o← cost(P (h, l))
6 seq ← append(seq, o)

The code is similar to the procedure S shown in Section II
except that we use directive makeSymbolic(name) to cre-
ate high and low symbolic values with the specified name.
Notably, at each iteration we create a symbolic value for low
(N (seq)), whose name is a function of observation sequence
seq. Intuitively, this mimics the fact that after observing
sequence seq, the attacker learns the information about h that
is consistent with these observations, and chooses the next low
value accordingly. However, instead of fixing an attack A a-
priori and choosing concrete low values based on it, we leave
the low values symbolic, encoding all the possible concrete
values at each attack step.

Running symbolic execution on Ssym will generate a set of
symbolic paths corresponding to the k invocations of program
P . These paths represent all the possible attacks of an adaptive
adversary up to k runs, since the symbolic values introduced
in Ssym represent all the possible concrete values (of high
and low). Furthermore, the symbolic paths generated with
a symbolic execution of a system represent all the possible
concrete paths through that system [3].

For simplicity we will assume that all the paths terminate
within the prescribed bound. As this is not always the case in
general, in practice we can use a notion of confidence (similar

to [18]) that quantifies the impact of the execution bound on
the quality of the analysis.

Each path π is a composition of paths π1;π2..πk, where
each πi is a path in the i-th invocation of P . The cost of π is a
k-observable, i.e., a sequence of k side-channel measurements
made during the attack. Each path has a corresponding path
condition, PCk(h, l̄), which in turn is a conjunction of k
path conditions obtained from single invocations of P (as
prescribed by Ssym). Here h denotes the symbolic value of the
secret while l̄ denotes a tuple of symbolic low values as created
by Ssym. Note that there is a one-to-one correspondence
between paths and path conditions. We write cost(PCk) to
denote the k-observable for the corresponding path.

A value assignment for the symbolic low variables defines a
concrete attack. In particular, let V be a function that assigns to
each symbolic low variable a value from low input’s domain.
We synthesize A by defining, for each low variable of the form
N (seq),

A(seq) = V(N (seq))

Different value assignments result in different attacks. For
each concrete attack we can compute the channel capacity
and Shannon entropy as follows. Let L̄ = 〈V(l1),V(l2), ...〉
denote a value assignment for a concrete attack. For each k-
observable oki we build a clause Ci:

Ci(h, L̄) = (
∨

cost(PCk
j )=oki

PC k
j (h, L̄))

Intuitively each clause characterizes all the secrets that are
indistinguishable under the attack defined by L̄. Let C be the
set of all satisfiable clauses. The channel capacity is then:

CCk(P ) = log2(|C|)

Further we compute the Shannon entropy using model
counting over the clauses to compute the probabilities for each
observation. For a uniform distribution over the secret, the
probability of observing oki is: p(oki ) = ](Ci(h,L̄))

]D .
Here ](c) denotes the number of solutions, i.e., possible

values satisfying the constraint c. This count can be computed
with an off-the-shelf model-counting procedure such as Barvi-
nok [19]. We use ]D to denote the size of the secret domain
D assumed to be (possible very large but) finite. Then leakage
according to Shannon entropy is defined as follows:

Hk(P ) = −
∑

i=1,m

](Ci(h, L̄))

]D
log2(

](Ci(h, L̄))

]D
)

We are interested in finding the assignment L̄ of low
variables that yield the maximal leakage according to the two
formulas above. Intuitively this value assignment will allow us
to compute bounds on the information leakage that an attacker
can achieve. We reduce the problem of finding this value
assignment to optimization problems over the set of clauses,
as described later in this section.



1) Example: Consider our running example. The result
of symbolically executing Ssym for the program is a set of
symbolic paths which can be organized in a tree as shown
in Figure 2 (for k = 3). In the tree, nodes depicted with
bold rectangles represent “attacker moves”, i.e., choosing low
values based on the history of observations. Nodes depicted
with light rectangles represent “system responses”, i.e., the
side-channel measurements made along program runs. We
also depict the intermediate path conditions computed for
the different observations. The path conditions encode the
constraints on the secret that the attacker is learning with each
observation, while attempting to narrow down the values of
the secret. The path constraints on the leaves represent the
knowledge that the attacker has learned after k steps.

The tree is interpreted as follows. In a first step the attacker
chooses symbolic value l for low and runs the program once
obtaining observations 〈1〉 and 〈2〉, with path conditions h ≥ l
and h < l respectively. The attacker, then runs the program a
second time, using a new symbolic value l1 if the observed cost
is 〈1〉 and a new symbolic value l2 if the observed cost is 〈2〉.
This second execution results in more constraints on the secret,
that help the attacker narrow down its values. For example, if
the observed cost sequence is 〈1, 2〉, one can determine that
the secret satisfies the constraint h ≥ l ∧ h < l1.

Note that the tree encodes multiple concrete attacks all at
once. For example, consider an attack that in the first run picks
low value 4, while in the second run it picks 5 after observing
〈1〉 and 3 after 〈2〉. This corresponds to variable assignment:
l = 4, l1 = 5, l2 = 3. After 〈1, 2〉 the attacker has learned
that h ≥ 4 ∧ h < 5 which narrows down the possible values
of h to only one value (4). Consider now a different variable
assignment: l = 4, l1 = 6, l2 = 3. After 〈1, 2〉 the attacker has
learned that h ≥ 4 ∧ h < 6 which narrows down the possible
values of h to two (4 and 5) etc.

True

L = l

cost〈1〉
h ≥ l

L = l1

cost〈1〉
h ≥ l
h ≥ l1

L = l11

cost〈1〉
h ≥ l
h ≥ l1
h ≥ l11

cost〈2〉
h ≥ l
h ≥ l1
h < l11

cost〈2〉
h ≥ l
h < l1

L = l12

cost〈1〉
h ≥ l
h < l1
h ≥ l12

cost〈2〉
h ≥ l
h < l1
h < l12

cost〈2〉
h < l

L = l2

cost〈1〉
h < l
h ≥ l2

L = l21

cost〈1〉
h < l
h ≥ l1
h ≥ l11

cost〈2〉
h < l
h ≥ l1
h < l11

cost〈2〉
h < l
h < l2

L = l22

cost〈1〉
h < l
h < l1
h ≥ l11

cost〈2〉
h < l
h < l1
h < l11

Fig. 2. Symbolic tree for running example.

A. Maximizing Channel Capacity
We compute the optimal strategy with respect to channel

capacity using MaxSMT solving, by extending the result
from [20] which, however, only applied to non-adaptive at-
tacks.

MaxSMT [12] is an extension of SMT (satisfiability modulo
theories) solving to optimization: given a weighted first-order
formula composed of a set of clauses, each with a weight
(positive or infinity), MaxSMT finds the assignment that
minimizes the sum of the weights of the falsified clauses, or
alternatively maximizes the sum of satisfied clauses.

In our setting we consider a set C = {C1, C2 . . . Cn}
of clauses, where each Ci has the weight 1. The MaxSMT
problem is then to find a subset M ⊆ C with largest
cardinality, such that M is satisfiable.

The approach is illustrated in Algorithm 1. Procedure Com-
puteConstraints builds a set C of clauses, where, as before,
each clause Ci(h, l̄) is a disjunction of the path conditions
leading to the same k-observable. Note, however, that the
values of low are left symbolic. This set is processed by
procedure MaxCC as follows. We transform Ci(h, l̄) into
Ci(hi, l̄) by renaming h with fresh hi in each clause Ci,
respectively. The intuition is the same as in [20]: the clauses
are renamed to define constraints on low variables, while the
high variables are left unconstrained and the goal is to find
the low input value that leads to the maximum number of
observations for any value of the secret.

Algorithm 1: AdaptiveMaxLeakCC(P, k, cost(·))
1 C ← ComputeConstraints(P, k, cost(·))
2 (w, L̄)←MaxCC(C)
3 return (log2w, L̄)

Procedure: ComputeConstraints(P, k, cost(·))
1 O ← ∅, C ← ∅
2 PC ← SymEx(Ssym(P, k, cost(·)))
3 foreach PCk

i (h, l̄) ∈ PC do
4 O ← O ∪ {costk(PCk

i (h, l̄))}
5 foreach oki ∈ O do
6 Ci(h, l̄)←

∨
cost(PCk

j )=oki

PC k
j (h, l̄)

7 C ← C ∪ {Ci(h, l̄)}
8 return C

Procedure: MaxCC(C): Maximizing Channel Capacity

1 C ← Rename(C)
2 (w, L̄)←MaxSMT (C)
3 return (w, L̄)

Applying MaxSMT to the set of renamed clauses will yield
the maximal number of clauses that are together satisfiable,
and thus yield the maximum number of observations possible
(up to k), giving maximum leakage in terms of channel capac-
ity. Further, MaxSMT gives a solution, i.e., an assignment L̄
to symbolic variables l̄ that satisfies the maximum satisfiable
clauses, meaning that it induces the partitioning on the secret
with the maximum number of equivalence indistinguishability
classes, and thus it defines the best k-step attack.



Proposition 2: Algorithm AdaptiveMaxLeakCC computes
the k-step adaptive attack that is optimal w.r.t. Channel Ca-
pacity.

1) Example: As an illustration, consider again the running
example. The analysis (up to k=3) yields 8 path conditions,
corresponding to cost sequences: 〈1, 1, 1〉, 〈1, 1, 2〉, 〈1, 2, 1〉,
〈1, 2, 2〉, 〈2, 1, 1〉, 〈2, 1, 2〉, 〈2, 2, 1〉, 〈2, 2, 2〉. Each symbolic
path yields different cost, thus each path condition corresponds
to a clause, giving the following clauses (after renaming):

h1 ≥ l ∧ h1 ≥ l1 ∧ h1 ≥ l11 h2 ≥ l ∧ h2 ≥ l1 ∧ h2 < l11

h3 ≥ l ∧ h3 < l1 ∧ h3 ≥ l12 h4 ≥ l ∧ h4 < l1 ∧ h4 < l12

h5 < l ∧ h5 ≥ l2 ∧ h5 ≥ l21 h6 < l ∧ h6 ≥ l2 ∧ h6 < l21

h7 < l ∧ h7 < l2 ∧ h7 ≥ l22 h8 < l ∧ h8 < l2 ∧ h8 < l22

Solving with MaxSMT gives that the maximum number
of satisfiable clauses, corresponding to maximum number of
observables after 3 steps, is 6, which is equal to the domain
of the secret. Thus, no matter what the value of the secret is
(in domain 1..6) an attacker can guess it in maximum 3 steps.
Furthermore, MaxSMT provides a satisfying assignment to the
values in l̄: l = 3, l1 = 5, l2 = 2, l11 = 6, l12 = 4 defining
an attack as illustrated in Figure 3. The leaves in the tree
define the partition on the secret induced by this attack. All
the blocks in the partition have size 1, confirming that the
attacker can always guess the secret for this example. Note
that the partitions on the right sub-tree in the figure already
have size 1 after two steps. Thus, a third attack step is not
necessary – in our implementation we exploit such situations
to perform pruning of the attack tree, as explained later in this
section.

h ∈ {1...6}

L = 3

cost〈1〉
h ∈ {3, 4, 5, 6}

L = 5

cost〈1〉
h ∈ {5, 6}

L = 6

cost〈1〉
h ∈ {6}

cost〈2〉
h ∈ {5}

cost〈2〉
h ∈ {3, 4}

L = 4

cost〈1〉
h ∈ {4}

cost〈2〉
h ∈ {3}

cost〈2〉
h ∈ {1, 2}

L = 2

cost〈1〉
h ∈ {2}

L = 2

cost〈1〉
h ∈ {2}

cost〈2〉
h ∈ {1}

L = 1

cost〈1〉
h ∈ {1}

Fig. 3. Attack tree computed with MaxSMT.

B. Maximizing Shannon Entropy

Computing the low inputs (i.e., the attack) that maximize
the number of observations does not necessarily lead to the
optimal attack with respect to Shannon entropy. We propose
alternative strategies that aim to maximize Shannon entropy
instead of simply the number of observations.

As described earlier, an attack consists of an assignment of
concrete values to symbolic low inputs, L̄ = 〈V(l1),V(l2), ...〉.
Our goal is to choose L̄ which maximizes the Shannon entropy
given that choice of L̄, which we denote Hk(P |L̄). Maximiz-
ing this entropy thereby maximizes the expected information

leakage after k steps. To achieve this we developed two
different methods, MaxHMarco and MaxHNumeric, which
are both phrased as combinatorial optimization problems over
l̄ with objective function Hk(P |l̄). These two methods are
complementary: MaxHMarco is guaranteed to return the par-
tition with highest entropy but it is sensitive to the size of
the input domain; MaxHNumeric uses numeric optimization
methods that are approximate and therefore can not provide
full guarantees but they can potentially scale to larger input
domains.

Algorithm 2: AdaptiveMaxLeakH(P, k, cost(·))
1 C ← ComputeConstraints(P, k, cost(·))
2 L̄←MaxH(C, true)
3 return (Hk(P |L̄), L̄)

Algorithm 2, AdaptiveMaxLeakH, outlines our approach.
We first use symbolic execution to compute the set of clauses
C which partitions the input. We then compute the value of L̄
which maximizes the entropy by setting the function MaxH to
be either MaxHMarco or MaxHNumeric, and finally return the
maximum entropy value, which gives the information leakage.
The two methods are detailed in the subsequent sections.

C. Entropy Maximization Via Maximal Satisfiable Subsets

The MaxSMT solution described in the previous section
represents only one maximal partition on the secret which
may not necessarily lead to maximum entropy. We therefore
propose to compute all the maximal partitions on the secret,
from which we choose the one that has maximal entropy.

To this end we use and extend the MARCO algorithm [13],
which solves a generalization of MaxSMT, namely the prob-
lem of finding all Maximal Satisfiable Subsets (MSSs) of
clauses that are together satisfiable.

Let C be a set of clauses of the form C(h, l̄) as before,
where each clause has the weight 1. Set M ⊆ C is a maximal
satisfiable subset (MSS) if (the conjunction of all clauses in)
M is satisfiable and ∀C ∈ C \M : M ∪ {C} is unsatisfiable.
Note that any solution to the MaxSMT problem is an MSS,
while some MSSs may have smaller cardinality than the
maximum size.

Each MSS contains a set of clauses {C1(h, l̄), C2(h, l̄), ..}
which are together satisfiable. Furthermore, each variable as-
signment L̄ over these clauses defines a partition on the secret,
where the secret values in each block satisfy a clause Ci(h, L̄).
We therefore generate, within each MSS, all the partitions on
the secret by repeatedly finding satisfiable assignment for low
values, and adding a blocking clause to find new partitions.
Note that this is not necessarily the same as enumerating all
the possible low values. We only search for different partitions
within the same maximal satisfiable subset.

Procedure MaxHMarco describes our approach. We use the
Marco algorithm to discover the setM of all MSSs; each MSS
is a maximal satisfiable subset of set of (renamed) clauses.
Formula ϕ(l̄) is the conjunction of all the clauses in the MSS



Procedure: MaxHMarco(C, D): Maximizing Entropy

1 C ← Rename(C)
2 M←Marco(C)
3 leakmax ← 0
4 foreach MSS ∈M do
5 ϕ(l̄)← true
6 foreach Ci(hi, l̄) ∈ MSS do
7 ϕ(l̄)← ϕ(l̄) ∧ Ci(hi, l̄)

8 while isSAT (ϕ(l̄)) do
9 L̄← getModel(ϕ(l̄))

10 foreach Ci(hi, l̄) ∈ MSS do
11 p(oki )← ](Ci(hi, L̄))/]D

12 leak ← −
∑

oki
p(oki ) log2(p(oki ))

13 if leakmax < leak then
14 leakmax ← leak
15 L̄max ← L̄

16 ϕ(l̄)← ϕ(l̄) ∧ ¬ϕ(L̄)

17 return Lmax

(for clarity we omit the h values). Each concrete low input L̄
defines a partition on the secret h that satisfies the clauses in
MMS, i.e., ϕ(L̄) is satisfiable. We force the SMT solver to
find different partitions by adding a blocking clause (line 13):

ϕ(l̄)← ϕ(l̄) ∧ ¬ϕ(L̄)

We discover all the partitions of the secret associated with this
MSS, when ϕ becomes unsatisfiable. Since the domain of l̄ is
finite, this is guaranteed to terminate.

Proposition 3: For any distribution on the secret the attack
of maximal entropy is given by the entropy of a partition in
the set M.

Proof: By constructionM contains all MSSs. This means
that any other sub-set S ⊆ C such that S 6∈ M is included
by an MSS, i.e., ∃M ∈ M such that S ⊆ M . It follows that
for any low value L, the partition induced by M is finer than
the partition induced by S (here we consider the refinement
order on partitions of the lattice of information from [21],
i.e., each block in the partition M is included in a block in
the partition S). Thus, according to [21], it follows that the
entropy induced by M is greater than the one induced by S,
because the entropy is a monotonic function w.r.t. the lattice
of information ordering (for any distribution on the secret).
Thus, we are guaranteed to find the partition with maximal
entropy by only searching through the MSSs.

MaxHMarco can be used with minimal modification for
computing the optimal attack with respect to other leakage
measures, e.g. to use for guessability we only need to replace
leak ← −

∑
oki
p(oki ) log2(p(oki )) with

leak ←
∑

bi
(bi/]D)(bi + 1)/2 where bi = ](Ci(hi, L̄))

and replace the test If leakmax < leak with If leakmax >
leak. Here guessability is the average number of guesses

required to guess the secret [15]. Notice that proposition 3
holds for guessability too once we make the above changes
to MaxHMarco. In fact guessability is anti-monotonic w.r.t.
the refinement order on partitions of the lattice of informa-
tion [21] and as for guessability the test leakmax < leak in
MaxHMarco is inverted, monotonicity in the proposition is
replaced by anti-monotonicity. Hence for guessability too we
can restrict the search for the optimal attack within the setM.

1) Example: Let us discuss again our running example (see
Fig. 1). Consider for simplicity a single attack step (i.e., k=1).
Performing symbolic execution on the code where secret
has symbolic value h yields clause set C = h ≥ l, h < l. Run-
ning the Marco algorithm yields only one maximal satisfiable
subset, C itself. Then φ(l) is h1 ≥ l∧h2 < l. Suppose solving
φ gives solution l = 2 (we ignore the solution for the high
values). This solution induces the following partition on the
secret: {1}{2, 3, 4, 5, 6}. Adding the blocking clause results in
a new formula: φ(l) :: h1 ≥ l ∧ h2 < l ∧¬(h1 ≥ 2∧ h2 < 2).
Solving this formula will yield a new solution (say l = 3)
that is guaranteed to be different than the previous one (due
to the blocking clause). This new solution yields a different
partition on the secret: {1,2}{3,4,5,6}. Adding a new blocking
clause for this solution will force the solver to generate a new
partition on the secret and so on. Thus we can find all the
secret partitions within the MSS. From these partitions, we
select the partition with the highest entropy. For this example
this corresponds to l = 4. Intuitively this is the best attack
step, since l = 4 partitions the secret in balanced blocks of
(almost) equal size.

D. Entropy Maximization Via Numeric Optimization

Our second approach generates a symbolic entropy function
and attempts to directly maximize that function using numeric
techniques. This method relies on parameterizing observation
sequence probabilities by the choice of low input values,
computed via model counting.

A model counting function for Ci(h, l̄) is a function Fi(l̄)
that computes the number of possible secrets h that satisfy Ci,
given a choice of l̄. For instance, recall the running example
from Fig. 1 with a secret domain 1 ≤ h ≤ 6 and suppose
we are interested in an attack for 2 steps. The adversary will
input an initial guess l, and then input l1 or l2 depending on
if cost 〈1〉 or cost 〈2〉 is observed. Then there are 4 possible
constraints over the vector l̄ = 〈l, l1, l2〉 corresponding to the
leaves of the symbolic attack tree.

C1 = h < l ∧ h < l1 C2 = h < l ∧ h ≥ l1

C3 = h ≥ l ∧ h < l2 C4 = h ≥ l ∧ h ≥ l2

Consider the number of secrets h that are consistent with
C1 for a given choice of l̄ and the domain of h. If both l > 6
and l1 > 6 then h can take on any value in the domain and
there are 6 solutions. If 1 ≤ l ≤ 6 ∧ l ≤ l1 then there are
exactly l − 1 values of h that satisfy C1. Symmetrically, if
1 ≤ l1 ≤ 6 ∧ l1 < l then there are l1 − 1 possible values for
h. Otherwise, C1 has no solutions. We can write a counting
function for this and the 3 remaining constraints as piecewise



functions (where it is assumed that if none of the piecewise
conditions apply then the function is 0.)

F1(l̄) =


6 : l > 6 ∧ l1 > 6

l− 1 : 1 ≤ l ≤ 6 ∧ l ≤ l1

l1 − 1 : 1 ≤ l1 ≤ 6 ∧ l1 < l

F2(l̄) =


6 : l1 < 1 ∧ 6 < l

l− l1 : 1 ≤ l1 ≤ l ≤ 6

l− 1 : l1 < 1 ≤ l ≤ 6

7− l1 : 1 ≤ l1 ≤ 6 < l

F3(l̄) =


6 : l < 1 ∧ 6 < l2

l2 − l : 1 ≤ l ≤ l2 ≤ 6

l2 − 1 : l < 1 ≤ l2 ≤ 6

7− l : 1 ≤ l ≤ 6 < l2

F4(l̄) =


6 : l < 1 ∧ l2 < 1

7− l : 1 ≤ l ≤ 6 ∧ l2 < l

7− l2 : 1 ≤ l2 ≤ 6 ∧ l ≤ l2

We use the parameterized model counter Barvinok [19] to
automatically produce each Fi(l̄). Barvinok performs param-
eterized model counting by representing a constraint C on
variables l̄ and h as a symbolic polytope Q ⊆ Rn. Barvinok’s
algorithm generates a multivariate piecewise polynomial F
such that F (l̄) evaluates to the number of assignments of
integer values to h that lie in the interior of Q.

Using each Fi(l̄) we compute the probability of an ob-
servation sequence given the values of the low inputs as
p(oki |l̄) = Fi(l̄)/#D. We then plug these symbolic probability
functions into Equation 1:

Hk(P |l̄) = −
m∑
i=1

Fi(l̄)

#D
log2

Fi(l̄)

#D

Then, the attack synthesis can be stated as a non-linear
objective function maximization problem, defined by L̄ =
arg maxl̄Hk(P |l̄). We leverage existing non-linear optimiza-
tion routines to approximate L̄. In our implementation we
used MATHEMATICA’s NMAXIMIZE. Our overall strategy
generation algorithm using numeric entropy maximization is
as follows:

Procedure: MaxHNumeric(C, D): Maximizing Entropy

1 foreach Ci ∈ C do
2 Fi(l̄)← Barvinok(Ci, l̄, h)
3 p(oki |l̄)← Fi(l̄)/#D

4 Hk(P |l̄)← −
∑m

i=1 p(o
k
i |l̄) log2(p(oki |l̄))

L̄ = NMaximize(Hk(P |l̄))
5 return L̄

For the example from Figure 1, maximizing H(P |l̄) results
in the assignment L̄ = 〈4, 2, 5〉 for symbolic inputs 〈l, l1, l2〉.
This corresponds to the first two steps of an adaptive timing
side channel binary search attack.

Note that method MaxHNumeric can also be used, with
minimal modifications, for computing an attack with respect to
other measures. Once we have the (parameterized) probability
computations (line 3) we can plug them in the formulas
for, e.g., guessability or Min entropy, and apply numeric
optimizations to maximize those measures.

E. Greedy Maximization

Generating the symbolic attack tree fully up to depth k will
generate up to mk knowledge states, where m is the number
of observables. Thus, the maximization methods presented so
far would involve over mk low variables. Rather than perform
the full exploration up to a given depth, we suggest a d-greedy
approach, in which the attack is computed in phases of size d
and the l-variables are solved to maximize channel capacity or
entropy for each phase. This reduces the problem to solving
k
d maximization problems of size md, with the trade off of
(possibly) yielding a suboptimal solution. Note that in the case
of a binary search oracle side channel, as in the example, the
1-greedy solution using Shannon entropy happens to be the
optimal solution, requiring solving k optimizations problems
each with 1 free parameter, rather than 1 optimization problem
with 2k parameters. In general a greedy solution can be
arbitrarily suboptimal [15].

F. Optimizations

Procedure ComputeConstraints(P, k, cost(·)) is used to
build a set of clauses, each one corresponding to a k-
observable. The simplest and most intuitive implementation
is to run Symbolic Execution on the system Ssym. However,
this implementation can be optimized by running Symbolic
Execution on only one copy of the program to obtain a set of
path conditions. We then obtain the clauses corresponding to k-
observables by systematically combining these path conditions
(with appropriate renaming). This optimization reduces the
overhead of symbolically executing the program multiple
times. Further, for our greedy techniques we implemented
early pruning to not expand attack steps for partition blocks
that already have size 1, since no new information can be
inferred for those blocks.

IV. IMPLEMENTATION AND EXPERIMENTS

We implemented the proposed techniques in the Sym-
bolic PathFinder (SPF) [14] symbolic execution tool. SPF
implements a custom JVM which symbolically executes Java
bytecode instructions. We also provide a graphical display
of the generated attacks. We use Barvinok [19] for (param-
eterized) model counting (for linear constraints). For numeric
maximization we use MATHEMATICA’s NMAXIMIZE function
[22] configured to use Differential Evolution [23] and set to
use between 100 and 250 iterations to balance running time
and convergence.

1) Cost Models: Our work is done in the context of
a project that specifically addresses side-channels that are
related to time and space consumption in Java programs.
To this end we implemented SPF listeners to monitor the



Case Study DOMAIN Steps
Full 1-greedy

maxObs CC time maxObs CC time

Illustrative Example in Fig. 1

10 4 10 3.322 3.060 8 3 2.330

200
8 - - - 64 6 10.026

16 - - - 200 7.644 27.225

300
9 - - - 83 6.375 11.561

21 - - - 300 8.229 36.827

400
9 - - - 97 6.600 13.143

20 - - - 400 8.644 49.103

500
9 - - - 71 6.150 10.049

25 - - - 500 8.966 1m1.076

106

10 1024 10 14.578 461 8.849 1m0.702

11 2048 11 2m2.680 752 9.555 1m40.382

12 4096 12 19m32.370 1199 10.228 2m39.689

13 - - - 1903 10.894 4m15.845

java.util.Arrays.equals

2563

4 35 5.129 15.717 35 5.129 8.668

5 56 5.807 11m40.356 56 5.807 13.943

6 - - - 84 6.392 20.981

2564 4 70 6.129 2m32.284 70 6.129 18.153

5 - - - 126 6.977 32.997

CRIME

502

2 6 2.585 1.818 6 2.585 5.694

3 10 3.322 8.533 10 3.322 9.301

4 15 3.907 1m12.912 15 3.907 12.433

5 21 4.392 15m5.197 21 4.392 15.783

10 - - - 66 6.044 56.212

20 - - - 231 7.852 5m29.748

40 - - - 861 9.750 45m57.736

503

2 10 3.322 1m11.818 10 3.322 9m18.541

3 - - - 20 4.321 19m4.114

4 - - - 35 5.129 29m30.333

LawDB

100 - 2

2 4 2 2.750 4 2 2.441

3 8 3 18.915 7 2.807 3.244

4 16 4 3m8.783 11 3.459 4.160

5 - - - 17 4.087 5.342

17 - - - 98 6.615 21.010

106 - 2

2 4 2 2.762 4 2 2.579

3 8 3 19.493 8 3 3.866

4 16 4 3m21.688 16 4 5.844

5 - - - 32 5 9.212

17 - - - 6070 12.567 18m31.246

Fig. 4. Results for MaxCC (full exploration and 1-greedy).

bytecode instructions executed by the program, and to per-
form the analysis of side-channels related to time and space
consumption. For timing channels we can compute the ex-
ecution time of each (symbolic) path by assigning a time
unit to each instruction and aggregating the cost. To obtain
a more realistic cost model, we can also perform statistical
measurements of the execution time of the program ran on
a reference hardware platform, as driven by the tests that
satisfy the corresponding path conditions. For space-related
channels we monitor network and file communication, by
providing models for network and file interactions and com-
puting the number of bytes written to an output stream or
file via methods write of java.io.OutputStream and
java.io.FileOutputStream respectively. Analysis of
other types of side channels can be implemented easily, e.g.

one can monitor the memory allocated inside SPF’s custom
JVM to measure memory consumption. Presumably one can
also implement cache side channels using the same JVM and
monitoring for sequences of hits and misses.

We also developed an abstraction layer that groups together
the costs that have very close values, as in practice they would
be indistinguishable to an adversary. Let omin and omax be
the minimum and maximum values of the costs observed along
the paths in one run. We divide the range into n intervals from
0th to (n− 1)th, where n is a user supplied parameter. Each
interval has equal size, d = omax−omin

n . We then map all the
costs obs such that omin + i×d ≤ obs < omin +(i+1)×d to
the same interval i (omax belongs to the (n − 1)th interval).
These intervals form the abstractions of the concrete costs and
they are used in the analysis. In practice this abstraction can be



Case Study MODULO DOMAIN Steps
Full 1-greedy

maxObs CC time maxObs CC time

ModPow [20]

1717

23 − 1 2 7 2.807 7.679 7 2.807 3.572

24 − 1
2 15 3.906 1m46.236 14 3.807 14.199

3 15 3.906 28.350

25 − 1

2 - - - 25 4.644 1m6.624

3 - - - 30 4.906 5m36.462

4 - - - 31 4.954 8m5.695

26 − 1

2 - - - 34 5.087 9m47.837

3 - - - 53 5.728 37m31.318

4 - - - - - -

834443

23 − 1 2 7 2.807 10.704 7 2.807 3.624

24 − 1
2 15 3.906 8m67.264 14 3.807 14.292

3 15 3.906 30.856

25 − 1

2 - - - 25 4.644 1m26.862

3 - - - 30 4.906 3m7.863

4 - - - 31 4.954 3m49.175

26 − 1

2 - - - 46 5.524 4m42.696

3 - - - 62 5.954 25m9.132

4 - - - 63 5.977 35m53.526

1964903306

23 − 1 2 7 2.807 13.124 7 2.807 3.269

24 − 1
2 - - - 14 3.807 17.063

3 - - - 15 3.906 27.107

25 − 1

2 - - - 25 4.644 2m24.405

3 - - - 30 4.906 4m1.789

4 - - - 31 4.954 4m27.231

Fig. 5. Results for MaxCC on ModPow [20].

used to find optimal attacks, while also providing the benefit
of greater scalability (since the number of observations and
hence of clauses can be reduced significantly).

2) Experiments: There are three main techniques (for a
depth k): (1) MaxCC, (2) MaxHMarco, and (3) MaxHNu-
meric, each with two variants: (a) full exploration and (b)
1-greedy approach. We evaluated both MaxCC (1a) and (1b)
and observed that they generate effective attacks in reasonable
time which we detail in the coming sections. For MaxHMarco
and MaxHNumeric, we find that due to the complexity of
composed constraints, (2a) and (3a) are not feasible in practice.
In addition, (2b) and (3b) give optimal or near-optimal attacks.
Thus we evaluate these four variants (1a, 1b, 2b, 3b) with the
goal of assessing if they can automatically synthesize attacks
and compute leakage for complex, realistic applications.

We analyzed the following programs: the standard Java
API java.util.Arrays.equals, CRIME – an imple-
mentation of string compression that uses the Lempel-Ziv
(LZ77) [24] algorithm, LawDB – a complex network service
application1, and ModPow – an implementation of modular
exponentiation [20].

The results of the experiments for MaxCC (1a and 1b) are
shown in Fig. 4 and Fig. 5, while the results of the experiments
for MaxHMarco and MaxHNumeric (2b and 3b) are shown in
Fig. 6. In the tables, DOMAIN is the number of possible values
of the secret. The tables show the number of attack steps,
the maximum number of observables, maxObs, the leakage
and the analysis time (in seconds). A ’-’ indicates timeout (of

1This program was provided to us by DARPA.

1h). All the experiments were run on a standard MacBook
Pro. We first give a high level description of the discovered
vulnerabilities and then we describe in more detail the results
displayed in the tables.

3) Vulnerabilities: Our techniques discovered a timing
channel in java.util.Arrays.equals which is due
to the early termination optimization. The method takes
two arrays, compares the elements one by one and re-
turns as soon as the elements are found to be differ-
ent. When used to compare a secret and a public in-
put, java.util.Array.equals(low, high), an ad-
versary can determine how many elements in the input array
are matched with the secret, by measuring the execution
time. She is then able to make repeated guesses on the
next un-matched element until it is matched (the execution
time is longer). An optimal attack is linear in the size of
the secret, as the adversary can use the channel to guess
each element one by one (as opposed to exponential for a
simple brute force attack). This is an instance of a segmented
oracle side channel which is studied in [25]. Our techniques
computed the optimal attack automatically. We note that the
use of java.util.Arrays.equals in Google’s Keyczar
library [26] led to a vulnerability that could allow an adversary
to forge signatures for data that was “signed” with the default
SHA-1 HMAC algorithm [27].

CRIME is inspired by the “Compression Ratio Info-
leak Made Easy” attack [28]. We analyzed procedure:
compress(high.concat(low)). Our techniques found
a space side channel: the size of the compressed string leaks



Case Study DOMAIN Steps
MaxHNumeric MaxHMarco

Leakage (bits) time maxObs Leakage (bits) time

Illustrative Example in Fig. 1

200 8 7.207 44.876 200 7.644 2m17.120

300 9 7.560 69.383 300 8.229 3m52.363

400 9 7.743 1m55.212 400 8.644 5m41.539

500 9 7.800 1m24.068 500 8.966 7m36.105

106

10 8.172 3m15.000 - - -

11 8.303 4m55.088 - - -

12 8.357 7m12.280 - - -

13 8.371 9m34.512 - - -

14 8.376 12m20.844 - - -

LawDB

100 - 2

2 1.999 2.552 4 1.999 1m5.234

3 2.999 4.688 8 2.999 1m33.656

4 3.998 10.284 16 3.998 1m49.308

5 4.996 17.604 32 4.996 2m15.564

6 5.921 33.852 64 5.921 2m25.816

7 6.614 57.36 98 6.615 2m36.325

500 - 2

2 1.999 3.128 4 1.999 6m0.768

3 2.999 7.340 8 2.999 8m39.441

4 3.999 10.816 16 3.999 10m33.013

5 4.999 22.828 32 4.999 12m52.701

6 5.997 39.844 64 5.997 15m20.654

7 6.994 1m9.876 128 6.994 15m34.624

8 7.966 2m6.796 256 7.985 17m43.237

9 8.760 3m32.292 497 8.955 18m4.668

106 - 2

2 2. 3.652 - - -

3 3. 7.452 - - -

4 4. 13.3 - - -

5 4.999 25.24 - - -

6 5.999 45.544 - - -

7 6.999 1m26.22 - - -

8 7.996 2m41.136 - - -

9 8.939 4m31.396 - - -

10 9.678 8m38.272 - - -

11 10.06 15m8.224 - - -

Fig. 6. Results for MaxHNumeric and MaxHMarco.

information about the secret, since it indicates the similarity
between high and low. This indicates a real-world vulnera-
bility, where string low can be provided by a user via, e.g., a
web form, and string high is the secret session information.
They are concatenated and sent to the server. By observing
compressed network packet size, a malicious user can reveal
secret web session tokens [28]. This is another instance of a
segmented oracle for which we computed the optimal attack.

LawDB is a network service application that provides access
to records about law enforcement personnel. The application
consists of 41 classes with 2844 line of codes, and uses the
Netty library2. On the server side, LawDB stores all employee
records in a database, and each employee is referenced with a
unique ID. All IDs are loaded into a tree data structure when
the server starts. There is a group of employees who works on
clandestine activities; their IDs are restricted information. On
the client side, there are several available operations, including
a search for all IDs within a chosen range. Upon receiving
the search request, the server delegates it to the tree data

2Netty library: http://netty.io/

structure, which returns all the IDs in the range. If the ID
is non-restricted, it is sent back to the client immediately in a
UDP package; otherwise the server writes to an error log file,
and does not send the restricted ID to the user. To analyze
this example we populated the database with two concrete
unrestricted IDs and one symbolic restricted ID, i.e. the secret
h. The adversary performs the search operation by providing
a symbolic range [lmin, lmax].

Our techniques found a timing channel that is due to the
fact that the response time of the server is noticeably longer
when there are restricted IDs in the search range (due to
the writing to the log file). Exploiting this timing channel,
an adversary can perform an adaptive attack to discover a
restricted ID. At a high level, this example is similar to our
running example as the optimal attack involves narrowing
down a range of secret values using repeated comparisons with
low values. Specifically, the adversary makes a range request
[min, max]. If the secret is in the range, then the execution
time is longer. If the secret is outside the range then the time
is slower. The adversary keeps making range queries smaller
and smaller until it gets to size 1. Our techniques found this

http://netty.io/


attack automatically. We note that for this example we used
an abstraction for the costs. First we preformed a symbolic
analysis on one run of the program and we obtained 30 path
conditions and 29 observables. We solved the path conditions,
we obtained concrete test inputs and we executed the pro-
gram (multiple times) on these inputs. Realtime measurements
showed that only two group of observables are noticeably
different. Therefore, we used abstraction to divide the costs
into two intervals obtaining a binary search attack, which we
validated by demonstrating it in operation.

ModPow implements modular exponentiation be mod m;
here base b is a public message, exponent e is a private key
and modulus m is part of the public key. It is well-known
that several implementations of modulo exponentiation have
timing channels [29], [1]. We analyzed the ModPow example
from [20] to compare with their work on non-adaptive attacks.
Our techniques found a timing channel related to a reduction
step present in the implementation. We note that this is a
challenging example for symbolic execution as it involves
complex, non-linear operations.

4) Results for MaxCC: The full approach, when it can
finish, returns optimal attacks. However, it is expensive, since
each analyzed clause encodes what amounts to k copies of
path conditions obtained from a single program run. The
greedy approach scales better but may not be optimal. See,
e.g., results for running example from Fig. 1. At each attack
step, the adversary provides an input, and can determine from
the observation whether the secret is greater or smaller than
her input. An optimal attack is a binary search in the secret’s
domain, which requires log2(DOMAIN) number of steps in the
worst case. Fig. 4 confirms that, when DOMAIN = 10, the full
approach reveals the whole secret in 4 steps (log2(10) = 3.3,
note also that maxObs = DOMAIN so full secret is revealed).
In general, a k-step attack would reveal 2k observables or
the whole secret if its domain is less than 2k. The attacks
synthesized by the greedy approach are not optimal. For
example, when DOMAIN = 200 the optimal strategy requires 8
steps to discover the whole secret; the greedy strategy requires
16 steps. However, it can synthesize this 16-step attack in less
than 1 minute, while the full approach times out.

Note also that with the same number of steps, the full
approach times out in small domains (200 - 500), but returns
quickly when the domain is large (106). The reason is that
when the domain is small some of the clauses are unsatisfiable,
and UNSAT instances are usually expensive.

For Arrays.equals and CRIME the attacks generated by
the greedy approach are as good as the attacks generated by the
full approach. In particular the greedy approach synthesizes
optimal attacks up to 5 steps (i.e. maxObs and leakage are
the same for full and greedy at same number of steps). We
conjecture that MaxCC greedy will always find the optimal
attack for such examples that admit segmented oracles. The
reason is that MaxSMT synthesizes a low input that can
generate the maximum number of observables, and hence path
conditions. This is only possible when the new low input
is different from all the previous ones, therefore the whole

procedure is a linear search on a segment, which is also the
optimal attack in segmented oracles.

On the other hand, for LawDB and the illustrative example,
MaxCC greedy does not generate the optimal attack, but still
scales well and generates tight bounds on the leakage within
a small number of steps as compared to the optimal attacks
(see discussion in the next section).

For ModPow, our approach is much faster than the approach
for non-adaptive attacks from [20]. For example, with MODULO
= 834443 and DOMAIN = 26, our greedy approach is able
to synthesize an attack that reveals the whole secret key in 4
steps. With the same configuration, the greedy approach in [20]
times out even for a 2-step analysis.

5) Results for MaxHMarco and MaxHNumeric – greedy:
Computing entropy is more expensive than computing channel
capacity. In addition, MaxCC quickly generates the optimal
attack for CRIME and Array.equals and so the more com-
putationally expensive MaxH approaches are not necessary.
On the other hand, we see that MaxCC does not generate the
optimal attack for LawDB and the running example. Thus we
apply the MaxH methods to these two examples using a 1-
greedy configuration. Results are shown in Fig. 6.

In the illustrative example, MaxHMarco can synthesize the
optimal strategy for DOMAIN up to 500, where MaxCC
timed out, and MaxCC greedy is not able to synthesize the
optimal attack. Furthermore MaxHMarco generates an attack
for LawDB for a small domain where 7 steps are enough to
reveal all 98 secret values. MaxCC is not able to analyze more
than 4 steps, and MaxCC greedy needs 17 steps to reveal the
full secret.

MaxHMarco relies on enumeration of partitions, so when
there is a different partition for each public input it does not
scale to large domains, and times out for a domain size of 106.
On the other hand MaxHNumeric scales well and discovers
attacks which leak only slightly less information for our
examples. We also performed experiments for LawDB without
abstraction, and we found that, as expected, the performance
of both MaxHMarco and MaxHNumeric starts to degrade
when the number of constraints increases. Thus the role of
the abstraction is essential for the analysis of large systems
and we plan to investigate it further in the future.

V. RELATED WORK

There is large body of work on side-channel analysis, e.g.
[29], [30], [1], [15], [31], [32], [33], [34], [20], [25], however
few of them consider quantifying information leakage over
multiple runs.

Köpf and Basin [15] were the first to show an information-
theoretic model of adaptive multi-run side-channel attacks and
to develop an automated technique to measure the remaining
entropy after an attack. The technique is based on an enumer-
ation algorithm (doubly-exponential in the number of attack
steps); a greedy heuristic is also presented, to compute the
remaining entropy of the secret after k steps. Similar to that
work we use a partition-refinement approach to express the
information that an attacker can gain about the secret. However



the goal of our work is different: we focus on synthesizing
the optimal attack while they aim to give theoretical bounds
on the information leakage. Furthermore our approach is
symbolic: while the previous work represents the knowledge
about the secret in terms of sets of concrete values and
computes adaptive attacks by enumerating over those values,
we represent sets of secrets using mathematical constraints
which encode succinctly much larger state spaces. This leads
to important methodological differences allowing us to apply
powerful optimization techniques over the constraints, without
a need for explicit enumeration. A generalization of [15] to
attack scenarios where secrets change over time is presented
in [34]. That work uses probabilistic programming to model
probabilistic, interactive systems and it is quite different from
ours.

In previous work [20] we used symbolic execution and
MaxSMT solving to synthesize multi-run attacks. However
that work only considers non-adaptive attacks. In this paper
we study adaptive attacks, i.e. a more powerful adversary,
who selects the inputs based on previous observations, and the
result of our synthesis is a strategy, i.e. different sequence of
low inputs depending on the observables. Our results indicate
that we can compute attacks much faster than in [20]; fur-
thermore adaptive attacks are typically shorter. An important
difference is that the approach from [20] only computes inputs
that maximize channel capacity while in this work we also
consider the harder problem of computing the inputs that
maximize entropy (and other information theory measures).
Another contribution is the use of an abstraction layer in the
cost model.

In other recent work [25], we aimed to quantify adaptive
attacks on programs with segmented oracles. In that work,
we assumed the best attack was known and was encoded
manually for analysis. In contrast we show here how to
synthesize optimal attacks automatically. We have included
the experiments on the largest case study (CRIME) from [25],
and we show how we can compute automatically the optimal
attack using a much larger input domain.

In the context of single-run analysis, the closet to our work
is the Disco technical approach [4]. Disco is a framework
for quantifying information leakage as defined by channel
capacity and Shannon entropy, using a combination of model
checking, quantifier elimination, and model counting. In the-
ory, Disco can be generalized to multi-run analysis by applying
it to the symbolic attack model that we defined in our paper.
However, it remains to be seen how that would perform in
practice, since, unlike our approach, Disco makes heavy use of
self composition [35], which can be very expensive to check.

Furthermore, Disco computes what information can an
attacker in principle gain (relation R [4]) but not the actual
attack step represented by the low value. That is our main
contribution: we synthesize a low value at each attack step that
maximizes leakage wrt channel capacity and Shannon entropy.
That low value can be used to build an attack.

Our MaxSMT method generates actual low inputs that
maximize leakage even in the presence of non-linear con-

straints (see modPow example). Disco does not compute
low inputs and performs quantifier elimination applicable only
to linear constraints. We do present two other methods that
maximize leakage wrt Shannon entropy that work only for
linear constraints; in our paper we implemented and compared
three different ways of choosing lows adaptively. Besides the
fact that they are not addressing the same problem, there
are many methodological differences between Disco and our
methods.

Another related work [11] proposes a technique for gener-
ating inputs that make the program violate a non-interference
policy in the context of single-run attacks. The analysis consid-
ers only single-run attacks and is qualitative, not quantitative
as our work, and thus can not be used or generalized to
computing the adaptive attacks that maximize leakage.

Further related research includes the large body of work on
the analysis of cache side channels [32], [33], focusing on a
single round of observation. Our tool is built on top of SPF,
a custom JVM with its own memory model, and can thus
analyze some memory side-channels. However, currently our
memory model does not have architecture-specific caches as
in [32], [33].

VI. CONCLUSION AND FUTURE WORK

We presented and evaluated symbolic analysis techniques
for detecting vulnerabilities that are due to adaptive side-
channel attacks and for synthesizing inputs that exploit the
vulnerabilities. Our experiments show that the most scal-
able approach is MaxCC greedy. The approach also finds
the optimal attack for side-channels with segmented oracles
(Arrays.equals and CRIME). MaxH greedy methods are
more expensive but they found optimal attacks for more
involved, “binary” oracles. We are not aware of previous work
that can automatically synthesize optimal attacks for complex
examples such as LawDB. We also showed that our approach
can scale better than previous work from [20]. Furthermore,
we remark that the domains used in our experiments, e.g. 106

and 2563, are beyond the capability of any concrete value
enumeration-based methods, even for two runs.

Future work includes implementing a distributed version
of our techniques, by creating and analyzing new parallel
jobs with each observation made. We are also investigating
approaches for model counting over non-linear constraints [36]
to further extend the applicability of our techniques. We also
plan to investigate the effects of non-determinism (including
garbage collection) on the analysis. A related area is analysis
and synthesis for side channels in the presence of noisy
observations. Furthermore we plan to work on automated
synthesis of prevention mechanisms to defend against attacks.
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APPENDIX

The implementation of the the Lempel-Ziv algorithm
(LZ77) [24], used in the CRIME case study, is in Figure 7.
As we have described, the string to be compressed is the
concatenation of the public input and the secret. The adversary
observes the length of the compressed string via, for example,
a packet sniffer, and infers information about the secret.
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p u b l i c s t a t i c byte [ ] compress ( f i n a l byte [ ] i n ) throws IOExcep t i on {

S t r i n g B u f f e r mSearchBuf fe r = new S t r i n g B u f f e r ( 1 0 2 4 ) ;
S t r i n g r e s u l t = ” ” ;

S t r i n g c u r r e n t M a t c h = ” ” ;
i n t matchIndex = 0 ;
i n t t empIndex = 0 ;
i n t n e x t C h a r ;
f o r ( i n t i = 0 ; i < i n . l e n g t h ; i ++){

n e x t C h a r = i n [ i ] ;

t empIndex = mSearchBuf fe r . indexOf ( c u r r e n t M a t c h + ( char ) n e x t C h a r ) ;
i f ( tempIndex != −1) {

c u r r e n t M a t c h += ( char ) n e x t C h a r ;
ma tchIndex = tempIndex ;

}
e l s e {

f i n a l S t r i n g c o d e d S t r i n g = new S t r i n g B u i l d e r ( ) . append ( ” ˜ ” ) . append ( matchIndex ) . append ( ” ˜ ” )
. append ( c u r r e n t M a t c h . l e n g t h ( ) ) . append ( ” ˜ ” ) . append ( ( char ) n e x t C h a r ) . t o S t r i n g ( ) ;

f i n a l S t r i n g c o n c a t = c u r r e n t M a t c h + ( char ) n e x t C h a r ;
i f ( c o d e d S t r i n g . l e n g t h ( ) <= c o n c a t . l e n g t h ( ) ) {

r e s u l t = r e s u l t + c o d e d S t r i n g ;
mSearchBuf fe r . append ( c o n c a t ) ;
c u r r e n t M a t c h = ” ” ;
matchIndex = 0 ;

}
e l s e {

f o r ( c u r r e n t M a t c h = conca t , ma tchIndex = −1; c u r r e n t M a t c h . l e n g t h ( ) > 1 && matchIndex == −1;
c u r r e n t M a t c h = c u r r e n t M a t c h . s u b s t r i n g ( 1 , c u r r e n t M a t c h . l e n g t h ( ) ) ,

ma tchIndex = mSearchBuf fe r . indexOf ( c u r r e n t M a t c h ) ) {
r e s u l t = r e s u l t + c u r r e n t M a t c h . c ha rA t ( 0 ) ;
mSea rchBuf fe r . append ( c u r r e n t M a t c h . c ha rA t ( 0 ) ) ;

}
}
i f ( mSearchBuf fe r . l e n g t h ( ) <= 1024) {

c o n t in u e ;
}
mSearchBuf fe r = mSearchBuf fe r . d e l e t e ( 0 , mSea rchBuf fe r . l e n g t h ( ) − 1 0 2 4 ) ;

}
}
i f ( matchIndex != −1) {

f i n a l S t r i n g c o d e d S t r i n g = new S t r i n g B u i l d e r ( ) . append ( ” ˜ ” ) . append ( matchIndex )
. append ( ” ˜ ” ) . append ( c u r r e n t M a t c h . l e n g t h ( ) ) . t o S t r i n g ( ) ;

i f ( c o d e d S t r i n g . l e n g t h ( ) <= c u r r e n t M a t c h . l e n g t h ( ) ) {
r e s u l t = r e s u l t + new S t r i n g B u i l d e r ( ) . append ( ” ˜ ” ) . append ( matchIndex ) . append ( ” ˜ ” )

. append ( c u r r e n t M a t c h . l e n g t h ( ) ) . t o S t r i n g ( ) ;
}
e l s e {

r e s u l t = r e s u l t + c u r r e n t M a t c h ;
}

}
f i n a l byte [ ] b y t e s = r e s u l t . g e t B y t e s ( ) ;
re turn b y t e s ;

}

Fig. 7. CRIME
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