Synthesis of Adaptive Side-Channel Attacks

Quoc-Sang Phan ${ }^{1}$, Lucas Bang ${ }^{2}$,
Corina S. Păsăreanu ${ }^{1,3}$, Pasquale Malacaria ${ }^{4}$, Tevfik Bultan ${ }^{2}$

${ }^{1}$ Carnegie Mellon University Moffet Field, CA, USA
${ }^{2}$ University of California, Santa Barbara
Santa Barbara, CA, USA
${ }^{3}$ NASA Ames Research Center
Moffet Field, CA, USA
${ }^{4}$ Queen Mary University of London London E1 4NS, UK
Computer Security Foundations
Santa Barbara, CA, USA
24 August 2017

Overview

Motivating Example

Motivating Example

High security input (secret): h
Low security input (public): 1

Motivating Example

High security input (secret): h
Low security input (public): l

```
int compare(h,l)
    if(h <= l)
        sleep(1);
    else
        sleep(2);
    return 0;
```


Motivating Example

High security input (secret): h
Low security input (public): l

```
int compare(h,l)
    if(h <= l)
        sleep(1);
    else
        sleep(2);
    return 0;
```


Motivating Example

High security input (secret): h Low security input (public): 1

Main channel:
Always 0 . No information.

```
int compare(h,l)
    if(h <= l)
        sleep(1);
    else
        sleep(2);
    return 0;
```


Motivating Example

High security input (secret): h Low security input (public): 1

```
int compare(h,l)
    if(h <= l)
        sleep(1);
    else
        sleep (2);
    return 0;
```

Main channel:
Always 0 . No information.

Side channel:
$t=1 \Rightarrow h \leq 1$

Motivating Example

High security input (secret): h Low security input (public): 1

```
int compare(h,l)
    if(h <= l)
        sleep (1);
    else
        sleep (2);
    return 0;
```

Main channel:
Always 0 . No information.

Side channel:
$t=1 \Rightarrow h \leq I$
$t=2 \Rightarrow h>l$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

1	2	3	4	5	6	7	8

$$
\begin{array}{lll}
t=1 & \Rightarrow & h \leq 1 \\
t=2 & \Rightarrow & h>1
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

1	2	3	4	5	6	7	8
1	$1=6$						
	$t=1 \Rightarrow h \leq 6$						
1	2	3	4	5	6	7	8

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow & h>1
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow & h>1
\end{array}
$$

1	2	3	4	5	6	7	8

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

1	2	3	4	5	6	7	8

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

1	2	3	4	5	6	7	8

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>l
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & h>l
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>l
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>l
\end{array}
$$

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>l
\end{aligned}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>l
\end{array}
$$

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

Too few divisions.

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

Unbalanced divisions.

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

Best tree induces maximum \# divisions

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & h>1
\end{array}
$$

1	2	3	4	5	6	7	8

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{array}{lll}
t=1 \Rightarrow h \leq 1 \\
t=2 \Rightarrow & \Rightarrow>1
\end{array}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>l
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>l
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

1	2	3	4	5	6	7	8

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>l
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

$$
\begin{aligned}
& t=1 \Rightarrow h \leq 1 \\
& t=2 \Rightarrow h>1
\end{aligned}
$$

Best tree induces maximum \# divisions and balanced divisions.

Find the Best Tree...

Find the Best Tree...

Find the Best Attack!

Find the Best Tree... Find the Best Attack!

 How?
Our Approach

$7 / 29$

Our Approach

1. Symbolic execution of attacker + system model.

Our Approach

1. Symbolic execution of attacker + system model.
2. Generate attack tree, symbolic over h and \bar{L}.

Our Approach

1. Symbolic execution of attacker + system model.
2. Generate attack tree, symbolic over h and \bar{L}.
3. Optimize over all trees

Our Approach

1. Symbolic execution of attacker + system model.
2. Generate attack tree, symbolic over h and \bar{L}.
3. Optimize over all trees \equiv maximization problem for \bar{L}.

Symbolic Execution

Symbolic Execution

- Static program analysis technique.

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :
- True branch: $P C \leftarrow P C \wedge c$

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :
- True branch: $P C \leftarrow P C \wedge c$
- False branch: $P C \leftarrow P C \wedge \neg C$

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :
- True branch: $P C \leftarrow P C \wedge c$
- False branch: $P C \leftarrow P C \wedge \neg C$
- Check feasibility of $P C$ using constraint solvers (Z3).

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :
- True branch: $P C \leftarrow P C \wedge c$
- False branch: $P C \leftarrow P C \wedge \neg C$
- Check feasibility of $P C$ using constraint solvers (Z3).
- Explore only feasible branches.

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :
- True branch: $P C \leftarrow P C \wedge c$
- False branch: $P C \leftarrow P C \wedge \neg C$
- Check feasibility of $P C$ using constraint solvers (Z3).
- Explore only feasible branches.
- During exploration, maintain side channel cost model.

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :
- True branch: $P C \leftarrow P C \wedge c$
- False branch: $P C \leftarrow P C \wedge \neg C$
- Check feasibility of $P C$ using constraint solvers (Z3).
- Explore only feasible branches.
- During exploration, maintain side channel cost model.
- Results in symbolic tree

Symbolic Execution

- Static program analysis technique.
- Execute program on symbolic rather than concrete inputs.
- Maintain path conditions, PCs, over symbolic inputs.
- When branch instruction encountered with condition c :
- True branch: $P C \leftarrow P C \wedge c$
- False branch: $P C \leftarrow P C \wedge \neg C$
- Check feasibility of $P C$ using constraint solvers (Z3).
- Explore only feasible branches.
- During exploration, maintain side channel cost model.
- Results in symbolic tree (attack tree).

Symbolic attack tree:

h and all l-choices symbolic constraints between h and / symbolic

Symbolic attack tree:

h and all l-choices symbolic constraints between h and I symbolic

Symbolic attack tree:

h and all l-choices symbolic constraints between h and I symbolic

Each leaf: symbolic constraint on h given by \bar{L}

Symbolic attack tree:

h and all l-choices symbolic constraints between h and I symbolic

Each leaf: symbolic constraint on h given by \bar{L}
Find optimal $\bar{L}=\left\langle I, l_{1}, l_{2}, l_{11}, l_{12}, l_{21}, l_{22}\right\rangle$

Symbolic attack tree:

h and all l-choices symbolic constraints between h and I symbolic

Each leaf: symbolic constraint on h given by \bar{L}
Find optimal $\bar{L}=\left\langle l_{1}, l_{2}, l_{11}, l_{12}, l_{21}, l_{22}\right\rangle=\langle 4,6,2,7,5,3,1\rangle$

Finding Best Attack Tree Method 1

Maximizing Number of Partition Divisions

```
foo(int l,int h)
    if (l<0)
        if (h<0) sleep(1)
        else if (h<5) sleep(2)
        else sleep(3)
    else
    if (h>1) sleep(4)
    else sleep(5)
```

Max-SMT: Maximum Satisfiablity Modulo Theories

Max-SMT: Maximum Satisfiablity Modulo Theories

$$
\begin{array}{ll}
C_{1}: & I<0 \wedge h_{1}<0 \\
C_{2}: & I<0 \wedge h_{2} \geq 0 \wedge h_{2}<5 \\
C_{3}: & I<0 \wedge h_{3} \geq 5 \\
C_{4}: & I \geq 0 \wedge h_{4}>1 \\
C_{5}: & I \geq 0 \wedge h_{5} \leq 1
\end{array}
$$

Max-SMT: Maximum Satisfiablity Modulo Theories

$$
\begin{array}{ll}
C_{1}: & I<0 \wedge h_{1}<0 \\
C_{2}: & I<0 \wedge h_{2} \geq 0 \wedge h_{2}<5 \\
C_{3}: & I<0 \wedge h_{3} \geq 5 \\
C_{4}: & I \geq 0 \wedge h_{4}>1 \\
C_{5}: & I \geq 0 \wedge h_{5} \leq 1
\end{array}
$$

- Find an assignment for / and h_{i} that maximizes the number of satisfiable constraints.

Max-SMT: Maximum Satisfiablity Modulo Theories

$$
\begin{array}{ll}
C_{1}: & I<0 \wedge h_{1}<0 \\
C_{2}: & I<0 \wedge h_{2} \geq 0 \wedge h_{2}<5 \\
C_{3}: & I<0 \wedge h_{3} \geq 5 \\
C_{4}: & I \geq 0 \wedge h_{4}>1 \\
C_{5}: & I \geq 0 \wedge h_{5} \leq 1
\end{array}
$$

- Find an assignment for / and h_{i} that maximizes the number of satisfiable constraints.

Max-SMT: Maximum Satisfiablity Modulo Theories

$$
\begin{array}{ll}
C_{1}: & I<0 \wedge h_{1}<0 \\
C_{2}: & I<0 \wedge h_{2} \geq 0 \wedge h_{2}<5 \\
C_{3}: & I<0 \wedge h_{3} \geq 5 \\
C_{4}: & I \geq 0 \wedge h_{4}>1 \\
C_{5}: & I \geq 0 \wedge h_{5} \leq 1
\end{array}
$$

- Find an assignment for $/$ and h_{i} that maximizes the number of satisfiable constraints.

Max-SMT: Maximum Satisfiablity Modulo Theories

$$
\begin{array}{ll}
C_{1}: & I<0 \wedge h_{1}<0 \\
C_{2}: & I<0 \wedge h_{2} \geq 0 \wedge h_{2}<5 \\
C_{3}: & I<0 \wedge h_{3} \geq 5 \\
C_{4}: & I \geq 0 \wedge h_{4}>1 \\
C_{5}: & I \geq 0 \wedge h_{5} \leq 1
\end{array}
$$

- Find an assignment for I and h_{i} that maximizes the number of satisfiable constraints.
- Optimal choice $I=-1$.

Max-SMT: Maximum Satisfiablity Modulo Theories

$$
\begin{array}{ll}
C_{1}: & I<0 \wedge h_{1}<0 \\
C_{2}: & I<0 \wedge h_{2} \geq 0 \wedge h_{2}<5 \\
C_{3}: & I<0 \wedge h_{3} \geq 5 \\
C_{4}: & I \geq 0 \wedge h_{4}>1 \\
C_{5}: & I \geq 0 \wedge h_{5} \leq 1
\end{array}
$$

- Find an assignment for $/$ and h_{i} that maximizes the number of satisfiable constraints.
- Optimal choice $I=-1$.
- Max-SMT assignment \equiv maximizing channel capacity.

Max-SMT: Maximum Satisfiablity Modulo Theories

$$
\begin{array}{ll}
C_{1}: & I<0 \wedge h_{1}<0 \\
C_{2}: & I<0 \wedge h_{2} \geq 0 \wedge h_{2}<5 \\
C_{3}: & I<0 \wedge h_{3} \geq 5 \\
C_{4}: & I \geq 0 \wedge h_{4}>1 \\
C_{5}: & I \geq 0 \wedge h_{5} \leq 1
\end{array}
$$

- Find an assignment for I and h_{i} that maximizes the number of satisfiable constraints.
- Optimal choice $I=-1$.
- Max-SMT assignment \equiv maximizing channel capacity.

MAX-SMT Problem: Find an assignment of values to variables that maximizes the number of simultaneously satisfied clauses.

Finding Best Attack Tree Method 2

Finding Balanced Partitions

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$
C_{i}(h, I)
$$

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$
p\left(C_{i}(h, l)\right)
$$

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$
p\left(C_{i}(h, l)\right) \log _{2} \frac{1}{p\left(C_{i}(h, l)\right)}
$$

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$
\sum_{i} p\left(C_{i}(h, I)\right) \log _{2} \frac{1}{p\left(C_{i}(h, I)\right)}
$$

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$
\mathcal{H}=\sum_{i} p\left(C_{i}(h, I)\right) \log _{2} \frac{1}{p\left(C_{i}(h, I)\right)}
$$

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$
\mathcal{H}=\sum_{i} p\left(C_{i}(h, I)\right) \log _{2} \frac{1}{p\left(C_{i}(h, I)\right)}
$$

Compared with MAX-SMT:

Finding Balanced Partitions

Find low inputs L for an attack tree with optimally balanced divisions
\equiv Maximizing Shannon entropy based on symbolic constraints.

Given probabilities, quantify information gain with Shannon entropy:

$$
\mathcal{H}=\sum_{i} p\left(C_{i}(h, I)\right) \log _{2} \frac{1}{p\left(C_{i}(h, I)\right)}
$$

Compared with MAX-SMT:
Channel Capacity $=\log _{2}$ \#divisions

$$
\mathcal{H} \leq C C
$$

Maximizing Shannon Entropy Numerically

Maximizing Shannon Entropy Numerically

$$
\begin{aligned}
& C_{1}=h<I \wedge h<I_{1} \\
& C_{2}=h<I \wedge h \geq I_{1} \\
& C_{3}=h \geq I \wedge h<I_{2} \\
& C_{4}=h \geq I \wedge h \geq I_{2}
\end{aligned}
$$

Maximizing Shannon Entropy Numerically

$$
\begin{aligned}
& C_{1}=h<I \wedge h<I_{1} \\
& C_{2}=h<I \wedge h \geq I_{1} \\
& C_{3}=h \geq I \wedge h<I_{2} \\
& C_{4}=h \geq I \wedge h \geq I_{2}
\end{aligned}
$$

Maximizing Shannon Entropy Numerically

$$
C_{1}=h<I \wedge h<I_{1}
$$

Maximizing Shannon Entropy Numerically

$$
C_{1}=h<I \wedge h<I_{1}
$$

Symbolic model counting functions computed with Barvinok.

Maximizing Shannon Entropy Numerically

$$
C_{1}=h<I \wedge h<I_{1}
$$

Symbolic model counting functions computed with Barvinok.
Barvinok gives piecewise multi-variate polynomial.

Maximizing Shannon Entropy Numerically

$$
C_{1}=h<I \wedge h<I_{1}
$$

Symbolic model counting functions computed with Barvinok.
Barvinok gives piecewise multi-variate polynomial.

$$
F_{1}\left(I, I_{1}, I_{2}\right)= \begin{cases}6 & : I>6 \wedge I_{1}>6 \\ I-1 & : 1 \leq I \leq 6 \wedge I \leq I_{1} \\ I_{1}-1 & : 1 \leq I_{1} \leq 6 \wedge I_{1}<I\end{cases}
$$

$F_{1}(\bar{L})$ tells you the size of the partition cell for C_{1}, for given \bar{L}.

Maximizing Shannon Entropy Numerically

$C_{1}=h<I \wedge h<I_{1}$	$F_{1}(\bar{I})=\left\{\begin{array}{ll\|}8 & : I>8 \wedge I_{1}>8 \\ I-1 & : 1 \leq I \leq 8 \wedge I \leq I_{1} \\ I_{1}-1 & : 1 \leq I_{1} \leq 8 \wedge I_{1}<I\end{array}\right.$
$C_{2}=h<I \wedge h \geq I_{1}$	$F_{2}(\bar{I})= \begin{cases}8 & : I_{1}<1 \wedge 8<I \\ I-I_{1} & : 1 \leq I_{1} \leq I \leq 8 \\ I-1 & : I_{1}<1 \leq 1 \leq 8 \\ 9-I_{1} & : 1 \leq I_{1} \leq 8<1\end{cases}$
$C_{3}=h \geq I \wedge h<I_{2}$	$F_{3}(\bar{I})= \begin{cases}8 & : I<1 \wedge 8<I_{2} \\ I_{2}-I & : 1 \leq I \leq I_{2} \leq 8 \\ I_{2}-1 & : I<1 \leq I_{2} \leq 8 \\ 9-I & : 1 \leq I \leq 8<I_{2}\end{cases}$
$C_{4}=h \geq I \wedge h \geq I_{2}$	$F_{4}(\bar{I})= \begin{cases}8 & : I<1 \wedge I_{2}<1 \\ 9-I & 1 \leq I \leq 8 \wedge I_{2}<I \\ 9-I_{2} & : 1 \leq I_{2} \leq 8 \wedge I \leq I_{2}\end{cases}$

Maximizing Shannon Entropy Numerically

$C_{1}=h<I \wedge h<I_{1}$	$F_{1}(\bar{I})=\left\{\begin{array}{ll\|}8 & : I>8 \wedge I_{1}>8 \\ I-1 & : 1 \leq I \leq 8 \wedge I \leq I_{1} \\ I_{1}-1 & : 1 \leq I_{1} \leq 8 \wedge I_{1}<I\end{array}\right.$
$C_{2}=h<I \wedge h \geq I_{1}$	$F_{2}(\bar{I})= \begin{cases}8 & : I_{1}<1 \wedge 8<I \\ I-I_{1} & : 1 \leq I_{1} \leq I \leq 8 \\ I-1 & : I_{1}<1 \leq I \leq 8 \\ 9-I_{1} & : 1 \leq I_{1} \leq 8<I\end{cases}$
$C_{3}=h \geq I \wedge h<I_{2}$	$F_{3}(\bar{I})= \begin{cases}8 & : I<1 \wedge 8<I_{2} \\ I_{2}-I & : 1 \leq I \leq I_{2} \leq 8 \\ I_{2}-1 & : I<1 \leq I_{2} \leq 8 \\ 9-I & : 1 \leq I \leq 8<I_{2}\end{cases}$
$C_{4}=h \geq I \wedge h \geq I_{2}$	$F_{4}(\bar{I})= \begin{cases}8 & : I<1 \wedge I_{2}<1 \\ 9-I & : 1 \leq I \leq 8 \wedge I_{2}<I \\ 9-I_{2} & : 1 \leq I_{2} \leq 8 \wedge I \leq I_{2}\end{cases}$

$$
\frac{F_{1}(\bar{L})}{8}
$$

Maximizing Shannon Entropy Numerically

$C_{1}=h<I \wedge h<I_{1}$	$F_{1}(\bar{I})=\left\{\begin{array}{ll\|}8 & : I>8 \wedge I_{1}>8 \\ I-1 & : 1 \leq I \leq 8 \wedge I \leq I_{1} \\ I_{1}-1 & : 1 \leq I_{1} \leq 8 \wedge I_{1}<I\end{array}\right.$
$C_{2}=h<I \wedge h \geq I_{1}$	$F_{2}(\bar{I})= \begin{cases}8 & : I_{1}<1 \wedge 8<I \\ I-I_{1} & : 1 \leq I_{1} \leq I \leq 8 \\ I-1 & : I_{1}<1 \leq I \leq 8 \\ 9-I_{1} & : 1 \leq I_{1} \leq 8<I\end{cases}$
$C_{3}=h \geq I \wedge h<I_{2}$	$F_{3}(\bar{I})= \begin{cases}8 & : I<1 \wedge 8<I_{2} \\ I_{2}-I & : 1 \leq I \leq I_{2} \leq 8 \\ I_{2}-1 & : I<1 \leq I_{2} \leq 8 \\ 9-I & : 1 \leq I \leq 8<I_{2}\end{cases}$
$C_{4}=h \geq I \wedge h \geq I_{2}$	$F_{4}(\bar{I})= \begin{cases}8 & : I<1 \wedge I_{2}<1 \\ 9-I & : 1 \leq I \leq 8 \wedge I_{2}<I \\ 9-I_{2} & : 1 \leq I_{2} \leq 8 \wedge I \leq I_{2}\end{cases}$

$$
\mathcal{H}(\bar{L})=\frac{F_{1}(\bar{L})}{8}
$$

Maximizing Shannon Entropy Numerically

$C_{1}=h<I \wedge h<I_{1}$	$F_{1}(\bar{I})=\left\{\begin{array}{ll\|}8 & : I>8 \wedge I_{1}>8 \\ I-1 & : 1 \leq I \leq 8 \wedge I \leq I_{1} \\ I_{1}-1 & : 1 \leq I_{1} \leq 8 \wedge I_{1}<I\end{array}\right.$
$C_{2}=h<I \wedge h \geq I_{1}$	$F_{2}(\bar{l})= \begin{cases}8 & : I_{1}<1 \wedge 8<I \\ I-I_{1} & : 1 \leq I_{1} \leq I \leq 8 \\ I-1 & : I_{1}<1 \leq I \leq 8 \\ 9-I_{1} & : 1 \leq I_{1} \leq 8<I\end{cases}$
$C_{3}=h \geq I \wedge h<I_{2}$	$F_{3}(\bar{I})= \begin{cases}8 & : I<1 \wedge 8<I_{2} \\ I_{2}-I & : 1 \leq I \leq I_{2} \leq 8 \\ I_{2}-1 & : I<1 \leq I_{2} \leq 8 \\ 9-I & : 1 \leq I \leq 8<I_{2}\end{cases}$
$C_{4}=h \geq I \wedge h \geq I_{2}$	$F_{4}(\bar{I})= \begin{cases}8 & : I<1 \wedge I_{2}<1 \\ 9-I & : 1 \leq I \leq 8 \wedge I_{2}<I \\ 9-I_{2} & : 1 \leq I_{2} \leq 8 \wedge I \leq I_{2}\end{cases}$

$$
\mathcal{H}(\bar{L})=\frac{F_{1}(\bar{L})}{8} \log _{2} \frac{8}{F_{1}(\bar{L})}+\frac{F_{2}(\bar{L})}{8} \log _{2} \frac{8}{F_{2}(\bar{L})}+\frac{F_{3}(\bar{L})}{8} \log _{2} \frac{8}{F_{3}(\bar{L})}+\frac{F_{4}(\bar{L})}{8} \log _{2} \frac{8}{F_{4}(\bar{L})}
$$

Maximizing Shannon Entropy Numerically

$$
\mathcal{H}(\bar{L})=\frac{F_{1}(\bar{L})}{8} \log _{2} \frac{8}{F_{1}(\bar{L})}+\frac{F_{2}(\bar{L})}{8} \log _{2} \frac{8}{F_{2}(\bar{L})}+\frac{F_{3}(\bar{L})}{8} \log _{2} \frac{8}{F_{3}(\bar{L})}+\frac{F_{4}(\bar{L})}{8} \log _{2} \frac{8}{F_{4}(\bar{L})}
$$

Maximizing Shannon Entropy Numerically

$$
\mathcal{H}(\bar{L})=\frac{F_{1}(\bar{L})}{8} \log _{2} \frac{8}{F_{1}(\bar{L})}+\frac{F_{2}(\bar{L})}{8} \log _{2} \frac{8}{F_{2}(\bar{L})}+\frac{F_{3}(\bar{L})}{8} \log _{2} \frac{8}{F_{3}(\bar{L})}+\frac{F_{4}(\bar{L})}{8} \log _{2} \frac{8}{F_{4}(\bar{L})}
$$

Numerically maximize $H(\bar{L})$

$$
\bar{L}=\langle 4,2,6\rangle
$$

Maximizing Shannon Entropy Numerically

$$
\mathcal{H}(\bar{L})=\frac{F_{1}(\bar{L})}{8} \log _{2} \frac{8}{F_{1}(\bar{L})}+\frac{F_{2}(\bar{L})}{8} \log _{2} \frac{8}{F_{2}(\bar{L})}+\frac{F_{3}(\bar{L})}{8} \log _{2} \frac{8}{F_{3}(\bar{L})}+\frac{F_{4}(\bar{L})}{8} \log _{2} \frac{8}{F_{4}(\bar{L})}
$$

Numerically maximize $H(\bar{L})$

$$
\bar{L}=\langle 4,2,6\rangle
$$

First two steps of optimal binary search attack on 8 secrets.

Finding Best Attack Tree Method 3

Maximizing Shannon Entropy, Third Approach

Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).
Optimization version of SAT.

Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).
Optimization version of SAT.
MaxH-MARCO algorithm:

Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).
Optimization version of SAT.
MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.

Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).
Optimization version of SAT.
MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.
2. Compute Shannon entropy for each maximal partition,

Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).
Optimization version of SAT.
MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.
2. Compute Shannon entropy for each maximal partition, select the one with largest Entropy.

Maximizing Shannon Entropy, Third Approach

Maximum Satisfiable Subsets (MSS).
Optimization version of SAT.
MaxH-MARCO algorithm:

1. Exhaustive enumeration of maximal partitions of the secret h.
2. Compute Shannon entropy for each maximal partition, select the one with largest Entropy.
MSS solution \Rightarrow maximize Shannon entropy.

Finding Best Attack Tree

Finding Best Attack Tree 3 Methods

Finding Best Attack Tree 3 Methods

Do they work?

Finding Best Attack Tree 3 Methods

Do they work?

Yes

Implementation

- Java Symbolic Pathfinder (JPF / SPF) for symbolic execution.
- Specialized listeners for tracking observables (time, space).
- Latte and Barvinok for model counting path constraints.
- Max-SMT (Z3), MARCO (java + Z3) MSS.
- Mathematica's NMAXIMIZE for numeric maximization.
- Heuristics: top-down greedy optimization.

Case study: Law Enforcement Employment Database

From DARPA Space-Time Analysis for Cybersecurity (STAC)

Server

- 41 classes, 2844 line of code.
- stores all employee records by ID in a database.
- Some employee IDs have restricted access.

Client

Commands available for users: SEARCH, INSERT, GET, PUT, ...
SEARCH a b has a timing channel: adaptive range query attack.

Case study: Law Enforcement Employment Database

Domain: 100 possible IDs in database (6.541 bits)

Case study: Law Enforcement Employment Database

Domain: 100 possible IDs in database (6.541 bits)

MAX-SMT

- Attack tree depth: 17 (complete attack)
- Running time: 21s

Case study: Law Enforcement Employment Database

 Domain: 100 possible IDs in database (6.541 bits)
MAX-SMT

- Attack tree depth: 17 (complete attack)
- Running time: 21s

Numeric Entropy Maximization

- Attack tree depth: 7 (complete attack)
- Running time: 57s

Case study: Law Enforcement Employment Database

 Domain: 100 possible IDs in database (6.541 bits)
MAX-SMT

- Attack tree depth: 17 (complete attack)
- Running time: 21s

Numeric Entropy Maximization

- Attack tree depth: 7 (complete attack)
- Running time: 57s

Max SAT Subsets

- Attack tree depth: 7 (complete attack)
- Running time: 2 m 36 s

Case study: Law Enforcement Employment Database

Domain: 1,000,000 possible IDs in database (19.9 bits)

Case study: Law Enforcement Employment Database

Domain: 1,000,000 possible IDs in database (19.9 bits)

MAX-SMT

- Attack tree depth: 17
- Incomplete attack: leaks at most 12.5 out of 19.9 bits
- Running time: 18m 31s

Case study: Law Enforcement Employment Database

Domain: 1,000,000 possible IDs in database (19.9 bits)

MAX-SMT

- Attack tree depth: 17
- Incomplete attack: leaks at most 12.5 out of 19.9 bits
- Running time: 18m 31s

Numeric Entropy Maximization

- Attack tree depth: 11
- Incomplete attack: leaks 10.0 out of 19.9 bits
- Running time: 15m 8s

Case study: Law Enforcement Employment Database

Domain: 1,000,000 possible IDs in database (19.9 bits)

MAX-SMT

- Attack tree depth: 17
- Incomplete attack: leaks at most 12.5 out of 19.9 bits
- Running time: 18m 31s

Numeric Entropy Maximization

- Attack tree depth: 11
- Incomplete attack: leaks 10.0 out of 19.9 bits
- Running time: 15 m 8 s

Max SAT Subsets

Does not scale to this domain.

More Case Studies

We synthesized attacks for:

- ModPow used in RSA
- Compression Ratio Information Leak Made Easy (CRIME)
- java.util.Arrays.equal() (segment oracle attack)

Conclusions

- Symbolic exection of adversary model to get constraint tree.
- Solve optimization problem to get low inputs to maximize leakage: attack tree.
- MAX-SMT

Symbolic Model Counting + Numeric Maximization Max-SAT-Subsets

- Experimentally validated our approach.

Questions?

Thank you.
$28 / 29$

