
Automatically Computing Path Complexity of
Programs

Lucas Bang, Abdulbaki Aydin, Tevfik Bultan
{bang,baki,bultan}@cs.ucsb.edu

Department of Computer Science
University of California, Santa Barbara

ESEC FSE 2015

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program
Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program
Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program
Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program

Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program
Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program
Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program
Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Overview: What did we do?

PAth
Complexity
Analyzer

(PAC)

Program
Counting
Function,
path(n)

Path Length
Bound, n

Number of
paths within

length n

Asymptotic
Behavior

path(n) = Θ(f (n))

Can you solve it, Will Hunting?

Can you solve it, Will Hunting?

Outline

Motivation

Path Complexity

Experiments

Motivation

Program Path Coverage

I Modern automated software testing techniques focus on program
path coverage.

I The number of execution paths could be infinite.
I Practical solution: explore up to a given depth bound.
I We propose a metric, the path complexity, an upper bound on

the number of paths needed to explore up to a given depth.
I This provides a measure of the difficulty of achieving path

coverage.

Motivation

Program Path Coverage

I Modern automated software testing techniques focus on program
path coverage.

I The number of execution paths could be infinite.
I Practical solution: explore up to a given depth bound.
I We propose a metric, the path complexity, an upper bound on

the number of paths needed to explore up to a given depth.
I This provides a measure of the difficulty of achieving path

coverage.

Motivation

Program Path Coverage

I Modern automated software testing techniques focus on program
path coverage.

I The number of execution paths could be infinite.

I Practical solution: explore up to a given depth bound.
I We propose a metric, the path complexity, an upper bound on

the number of paths needed to explore up to a given depth.
I This provides a measure of the difficulty of achieving path

coverage.

Motivation

Program Path Coverage

I Modern automated software testing techniques focus on program
path coverage.

I The number of execution paths could be infinite.
I Practical solution: explore up to a given depth bound.

I We propose a metric, the path complexity, an upper bound on
the number of paths needed to explore up to a given depth.

I This provides a measure of the difficulty of achieving path
coverage.

Motivation

Program Path Coverage

I Modern automated software testing techniques focus on program
path coverage.

I The number of execution paths could be infinite.
I Practical solution: explore up to a given depth bound.
I We propose a metric, the path complexity, an upper bound on

the number of paths needed to explore up to a given depth.

I This provides a measure of the difficulty of achieving path
coverage.

Motivation

Program Path Coverage

I Modern automated software testing techniques focus on program
path coverage.

I The number of execution paths could be infinite.
I Practical solution: explore up to a given depth bound.
I We propose a metric, the path complexity, an upper bound on

the number of paths needed to explore up to a given depth.
I This provides a measure of the difficulty of achieving path

coverage.

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.

I path(n) be the number of paths of length less than or equal n,
i.e. the accumulated sum of count(n).

I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).

I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 2

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 4

 1

3

 2

 3

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).

Computing Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

0 0 0
1 1 1
2 1 2
3 0 2
4 1 3
5 1 4
6 0 4
...

...
...

Appears to grow linearly... is it 2
3 n?

Computing Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

20 1 14
21 0 15
22 1 15
23 1 16
24 0 16
25 1 17
26 1 18
...

...
...

Appears to grow linearly... is it 2
3 n?

Computing Path Complexity

boolean passCheck1(){
while(i<n){
if(p[i] != pass[i])
return false;
i++;

}
return true;
}

1

2

 1

4

 1

 1

3

 1

 1

n count(n) path(n)

20 1 14
21 0 15
22 1 15
23 1 16
24 0 16
25 1 17
26 1 18
...

...
...

Appears to grow linearly... is it 2
3 n?

Computing Path Complexity

boolean passCheck2(){
matched = true;
while(i<n){
if(p[i] != pass[i])
matched = false;
i++;

}
return matched;

}

1

2

5

3

4

n count(n) path(n)

0 0 0
1 1 1
2 0 1
3 0 1
4 1 2
5 1 3
6 0 3
...

...
...

Also appears to be linear...or does it?
Could be polynomial or exponential.

Computing Path Complexity

boolean passCheck2(){
matched = true;
while(i<n){
if(p[i] != pass[i])
matched = false;
i++;

}
return matched;

}

1

2

5

3

4

n count(n) path(n)

0 0 0
1 1 1
2 0 1
3 0 1
4 1 2
5 1 3
6 0 3
...

...
...

Also appears to be linear...or does it?
Could be polynomial or exponential.

Computing Path Complexity

boolean passCheck2(){
matched = true;
while(i<n){
if(p[i] != pass[i])
matched = false;
i++;

}
return matched;

}

1

2

5

3

4

n count(n) path(n)

0 0 0
1 1 1
2 0 1
3 0 1
4 1 2
5 1 3
6 0 3
...

...
...

Also appears to be linear...or does it?
Could be polynomial or exponential.

Computing Path Complexity

boolean passCheck2(){
matched = true;
while(i<n){
if(p[i] != pass[i])
matched = false;
i++;

}
return matched;

}

1

2

5

3

4

n count(n) path(n)

20 11 69
21 16 85
22 21 106
23 22 128
24 27 155
25 37 192
26 43 235
...

...
...

Also appears to be linear...

or is it?
Could be polynomial or exponential.

Computing Path Complexity

boolean passCheck2(){
matched = true;
while(i<n){
if(p[i] != pass[i])
matched = false;
i++;

}
return matched;

}

1

2

5

3

4

n count(n) path(n)

20 11 69
21 16 85
22 21 106
23 22 128
24 27 155
25 37 192
26 43 235
...

...
...

Also appears to be linear...or is it?

Could be polynomial or exponential.

Computing Path Complexity

boolean passCheck2(){
matched = true;
while(i<n){
if(p[i] != pass[i])
matched = false;
i++;

}
return matched;

}

1

2

5

3

4

n count(n) path(n)

20 11 69
21 16 85
22 21 106
23 22 128
24 27 155
25 37 192
26 43 235
...

...
...

Also appears to be linear...or is it?
Could be polynomial or exponential.

Computing Path Complexity

The path complexity problem:

I How to compute path(n) automatically?
I What is the asymptotic behavior of path(n)?

Computing Path Complexity

The path complexity problem:
I How to compute path(n) automatically?

I What is the asymptotic behavior of path(n)?

Computing Path Complexity

The path complexity problem:
I How to compute path(n) automatically?
I What is the asymptotic behavior of path(n)?

Matrix Exponentiation

I For a particular n, we can compute path(n) using the p × p
adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1



A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1



A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1



A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix Exponentiation
I For a particular n, we can compute path(n) using the p × p

adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1

4

 1

 1

3

 1

 1

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.

Matrix exponentiation works. Is there a better way?

Generating Functions

Generating Functions
I Generating functions are a mathematical tool for representing

sequences.

(i.e. path(n) = 0,1,2,2,3,4,4, . . .)
I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)
I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path(6) = 4

Generating Functions
I Generating functions are a mathematical tool for representing

sequences. (i.e. path(n) = 0,1,2,2,3,4,4, . . .)

I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)
I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path(6) = 4

Generating Functions
I Generating functions are a mathematical tool for representing

sequences. (i.e. path(n) = 0,1,2,2,3,4,4, . . .)
I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)

I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path(6) = 4

Generating Functions
I Generating functions are a mathematical tool for representing

sequences. (i.e. path(n) = 0,1,2,2,3,4,4, . . .)
I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)
I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path(6) = 4

Generating Functions
I Generating functions are a mathematical tool for representing

sequences. (i.e. path(n) = 0,1,2,2,3,4,4, . . .)
I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)
I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path(6) = 4

Generating Functions
I Generating functions are a mathematical tool for representing

sequences. (i.e. path(n) = 0,1,2,2,3,4,4, . . .)
I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)
I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path(6) = 4

Generating Functions
I Generating functions are a mathematical tool for representing

sequences. (i.e. path(n) = 0,1,2,2,3,4,4, . . .)
I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)
I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path(6) = 4

Good job, Will Hunting!

Good job, Will Hunting!

Good job, Will Hunting!

Good job, Will Hunting!

Good job, Will Hunting!

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,

1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,

−1 +
√

3i
2

,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,

−1−
√

3i
2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n

+ c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n +

c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+

c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

Tight bounds for path(n)

Our solution looks very...

complex

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

I For any complex number w , we have the tight bounds

−2|w |n ≤ |wn + wn| ≤ 2|w |n

−
1
3
≤
(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

≤
1
3

Now, it looks much simpler:

2n
3
≤ path(n) ≤ 2n

3
+

2
3

Tight bounds for path(n)

Our solution looks very... complex

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

I For any complex number w , we have the tight bounds

−2|w |n ≤ |wn + wn| ≤ 2|w |n

−
1
3
≤
(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

≤
1
3

Now, it looks much simpler:

2n
3
≤ path(n) ≤ 2n

3
+

2
3

Tight bounds for path(n)

Our solution looks very... complex

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

I For any complex number w , we have the tight bounds

−2|w |n ≤ |wn + wn| ≤ 2|w |n

−
1
3
≤
(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

≤
1
3

Now, it looks much simpler:

2n
3
≤ path(n) ≤ 2n

3
+

2
3

Tight bounds for path(n)

Our solution looks very... complex

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

I For any complex number w , we have the tight bounds

−2|w |n ≤ |wn + wn| ≤ 2|w |n

−
1
3
≤
(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

≤
1
3

Now, it looks much simpler:

2n
3
≤ path(n) ≤ 2n

3
+

2
3

Tight bounds for path(n)

Our solution looks very... complex

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

I For any complex number w , we have the tight bounds

−2|w |n ≤ |wn + wn| ≤ 2|w |n

−
1
3
≤
(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

≤
1
3

Now, it looks much simpler:

2n
3
≤ path(n) ≤ 2n

3
+

2
3

Tight bounds for path(n)

0 2 4 6 8

0

2

4

6

1

3

5

Execution Path Length Bound n

P
at

h
C

om
pl

ex
ity

Exact
Bounds

Asymptotic Behavior

I We extract the highest order term using standard asymptotic
analysis from calculus

f = Θ(g(n))⇔ lim
n→∞

f (n)

g(n)
= 1

I Applied to our examples:
I Function passCheck1()

path(n) = Θ (n)

I Function passCheck2()

path(n) = Θ
(
1.221n)

Asymptotic Behavior

I We extract the highest order term using standard asymptotic
analysis from calculus

f = Θ(g(n))⇔ lim
n→∞

f (n)

g(n)
= 1

I Applied to our examples:

I Function passCheck1()

path(n) = Θ (n)

I Function passCheck2()

path(n) = Θ
(
1.221n)

Asymptotic Behavior

I We extract the highest order term using standard asymptotic
analysis from calculus

f = Θ(g(n))⇔ lim
n→∞

f (n)

g(n)
= 1

I Applied to our examples:
I Function passCheck1()

path(n) = Θ (n)

I Function passCheck2()

path(n) = Θ
(
1.221n)

Asymptotic Behavior

I We extract the highest order term using standard asymptotic
analysis from calculus

f = Θ(g(n))⇔ lim
n→∞

f (n)

g(n)
= 1

I Applied to our examples:
I Function passCheck1()

path(n) = Θ (n)

I Function passCheck2()

path(n) = Θ
(
1.221n)

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {

throw new ArrayIndexOutOfBoundsException(fromIndex);
}
if (toIndex > length) {

throw new ArrayIndexOutOfBoundsException(toIndex);
}

}

I Path Complexity: 4
I Asymptotic: Θ(1)

I Complexity Class: Constant

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {

throw new ArrayIndexOutOfBoundsException(fromIndex);
}
if (toIndex > length) {

throw new ArrayIndexOutOfBoundsException(toIndex);
}

}

I Path Complexity: 4
I Asymptotic: Θ(1)

I Complexity Class: Constant

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {
throw new ArrayIndexOutOfBoundsException(fromIndex);

}
if (toIndex > length) {
throw new ArrayIndexOutOfBoundsException(toIndex);

}
}

I Path Complexity: 4
I Asymptotic: Θ(1)

I Complexity Class: Constant

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {
throw new ArrayIndexOutOfBoundsException(fromIndex);

}
if (toIndex > length) {
throw new ArrayIndexOutOfBoundsException(toIndex);

}
}

I Path Complexity: 4
I Asymptotic: Θ(1)

I Complexity Class: Constant

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {
throw new ArrayIndexOutOfBoundsException(fromIndex);

}
if (toIndex > length) {
throw new ArrayIndexOutOfBoundsException(toIndex);

}
}

I Path Complexity: 4

I Asymptotic: Θ(1)

I Complexity Class: Constant

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {
throw new ArrayIndexOutOfBoundsException(fromIndex);

}
if (toIndex > length) {
throw new ArrayIndexOutOfBoundsException(toIndex);

}
}

I Path Complexity: 4
I Asymptotic: Θ(1)

I Complexity Class: Constant

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {
throw new ArrayIndexOutOfBoundsException(fromIndex);

}
if (toIndex > length) {
throw new ArrayIndexOutOfBoundsException(toIndex);

}
}

I Path Complexity: 4
I Asymptotic: Θ(1)

I Complexity Class: Constant

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

public Matcher reset() {
first = -1;
last = 0;
oldLast = -1;
for(int i=0; i<groups.length; i++)
groups[i] = -1;

for(int i=0; i<locals.length; i++)
locals[i] = -1;

lastAppendPosition = 0;
from = 0;
to = getTextLength();
return this;

}

I Path Complexity: 0.12n2 + 1.25n + 3
I Asymptotic: Θ(n2)

I Complexity Class: Polynomial

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

public Matcher reset() {
first = -1;
last = 0;
oldLast = -1;
for(int i=0; i<groups.length; i++)
groups[i] = -1;

for(int i=0; i<locals.length; i++)
locals[i] = -1;

lastAppendPosition = 0;
from = 0;
to = getTextLength();
return this;

}

I Path Complexity: 0.12n2 + 1.25n + 3
I Asymptotic: Θ(n2)

I Complexity Class: Polynomial

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

public Matcher reset() {
first = -1;
last = 0;
oldLast = -1;
for(int i=0; i<groups.length; i++)
groups[i] = -1;

for(int i=0; i<locals.length; i++)
locals[i] = -1;

lastAppendPosition = 0;
from = 0;
to = getTextLength();
return this;

}

I Path Complexity: 0.12n2 + 1.25n + 3

I Asymptotic: Θ(n2)

I Complexity Class: Polynomial

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

public Matcher reset() {
first = -1;
last = 0;
oldLast = -1;
for(int i=0; i<groups.length; i++)
groups[i] = -1;

for(int i=0; i<locals.length; i++)
locals[i] = -1;

lastAppendPosition = 0;
from = 0;
to = getTextLength();
return this;

}

I Path Complexity: 0.12n2 + 1.25n + 3
I Asymptotic: Θ(n2)

I Complexity Class: Polynomial

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

public Matcher reset() {
first = -1;
last = 0;
oldLast = -1;
for(int i=0; i<groups.length; i++)
groups[i] = -1;

for(int i=0; i<locals.length; i++)
locals[i] = -1;

lastAppendPosition = 0;
from = 0;
to = getTextLength();
return this;

}

I Path Complexity: 0.12n2 + 1.25n + 3
I Asymptotic: Θ(n2)

I Complexity Class: Polynomial

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static int binarySearch0(long[] a,
int fromIndex, int toIndex, long key) {

int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found.

}

I Path Complexity: (6.86)(1.17)n + (0.22)(1.1)n + (0.13)(0.84)n + 2
I Asymptotic: Θ(1.17n)
I Complexity Class: Exponential

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static int binarySearch0(long[] a,
int fromIndex, int toIndex, long key) {

int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found.

}

I Path Complexity: (6.86)(1.17)n + (0.22)(1.1)n + (0.13)(0.84)n + 2
I Asymptotic: Θ(1.17n)
I Complexity Class: Exponential

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static int binarySearch0(long[] a,
int fromIndex, int toIndex, long key) {

int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found.

}

I Path Complexity: (6.86)(1.17)n + (0.22)(1.1)n + (0.13)(0.84)n + 2

I Asymptotic: Θ(1.17n)
I Complexity Class: Exponential

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static int binarySearch0(long[] a,
int fromIndex, int toIndex, long key) {

int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found.

}

I Path Complexity: (6.86)(1.17)n + (0.22)(1.1)n + (0.13)(0.84)n + 2
I Asymptotic: Θ(1.17n)

I Complexity Class: Exponential

Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static int binarySearch0(long[] a,
int fromIndex, int toIndex, long key) {

int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found.

}

I Path Complexity: (6.86)(1.17)n + (0.22)(1.1)n + (0.13)(0.84)n + 2
I Asymptotic: Θ(1.17n)
I Complexity Class: Exponential

Other Complexity Measures

I Cyclomatic complexity: the maximum number of linearly
independent paths in the CFG.

I A set of paths is linearly independent if and only if each path
contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.
I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2

Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.
I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2

Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.

I Limitation: Both cyclomatic and NPATH return constant numbers,
regardless of loops.

I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2

Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.

I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2

Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.
I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2

Complexity Comparison

Pattern Control Flow Graph Cyclomatic
Complexity

NPATH
Complexity

Asymptotic
Complexity

K If-Else
in sequence

1

1'

2

(K-1)'

K K + 1 2K 2K

K If-Else
nested

1

K

1'

K+1

K'

K + 1 K + 1 K + 1

K Loops
in sequence

1 2 K-1 K K + 1 2K Θ(nK)

K Loops
nested

1 2 K-1 K K + 1 K + 1 Θ(bn)

Experiments
I Tested our analysis on Java 7 SDK (132K methods, ≈ 2.5 hr.)

and Apache Commons (44K methods, ≈ 1 hr.) libraries.
I Separated methods into complexity classes:

I C = 1 Unique path
I C > 1 Constant number of paths
I nk Polynomial
I bn Exponential

Java 7 SDK

C = 1

C > 1 nk
bn

60.0%

30.1%

5.3%

4.6%

Apache Commons

C = 1

C > 1 nk
bn

60.8%

27.0%

6.7%

5.5%

Experiments
I Tested our analysis on Java 7 SDK (132K methods, ≈ 2.5 hr.)

and Apache Commons (44K methods, ≈ 1 hr.) libraries.
I Separated methods into complexity classes:

I C = 1 Unique path
I C > 1 Constant number of paths
I nk Polynomial
I bn Exponential

Java 7 SDK

C = 1

C > 1 nk
bn

60.0%

30.1%

5.3%

4.6%

Apache Commons

C = 1

C > 1 nk
bn

60.8%

27.0%

6.7%

5.5%

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

I vlab.cs.ucsb.edu/PAC/

I Implemented using ASM Framework and MATHEMATICA.
I Source code and experimental results are available.

I Web version.
1. Upload Java .class or .jar file.
2. Output a table of cyclomatic, NPATH, and (asymptotic) path

complexities for all methods.

vlab.cs.ucsb.edu/PAC/

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

I vlab.cs.ucsb.edu/PAC/
I Implemented using ASM Framework and MATHEMATICA.

I Source code and experimental results are available.
I Web version.

1. Upload Java .class or .jar file.
2. Output a table of cyclomatic, NPATH, and (asymptotic) path

complexities for all methods.

vlab.cs.ucsb.edu/PAC/

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

I vlab.cs.ucsb.edu/PAC/
I Implemented using ASM Framework and MATHEMATICA.

I Source code and experimental results are available.

I Web version.
1. Upload Java .class or .jar file.
2. Output a table of cyclomatic, NPATH, and (asymptotic) path

complexities for all methods.

vlab.cs.ucsb.edu/PAC/

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

I vlab.cs.ucsb.edu/PAC/
I Implemented using ASM Framework and MATHEMATICA.

I Source code and experimental results are available.
I Web version.

1. Upload Java .class or .jar file.
2. Output a table of cyclomatic, NPATH, and (asymptotic) path

complexities for all methods.

vlab.cs.ucsb.edu/PAC/

Future Work

I Experimentally validate that path complexity is a good measure
of the difficulty of acheiving path coverage.

I Extend analysis to inter-procedural calls using the theory of
generating functions for generative grammars.

I Path complexity may count infeasible paths–provides only an
upper bound. Refine path complexity to consider simple path
conditions.

I Apply path complexity results to side-channel analysis for timing
attacks.

Thank you.

	Motivation
	Path Complexity
	Experiments

