Automatically Computing Path Complexity of Programs

Lucas Bang, Abdulbaki Aydin, Tevfik Bultan
\{bang, baki, bultan\}@cs.ucsb. edu

Department of Computer Science
University of California, Santa Barbara

ESEC FSE 2015

Overview: What did we do?

Overview: What did we do?

Overview: What did we do?

PAth
 Complexity
 Analyzer
 (PAC)

Overview: What did we do?

Can you solve it, Will Hunting?

Can you solve it, Will Hunting?

Outline

Motivation

Path Complexity

Experiments

Motivation

Program Path Coverage

Motivation

Program Path Coverage

- Modern automated software testing techniques focus on program path coverage.

Motivation

Program Path Coverage

- Modern automated software testing techniques focus on program path coverage.
- The number of execution paths could be infinite.

Motivation

Program Path Coverage

- Modern automated software testing techniques focus on program path coverage.
- The number of execution paths could be infinite.
- Practical solution: explore up to a given depth bound.

Motivation

Program Path Coverage

- Modern automated software testing techniques focus on program path coverage.
- The number of execution paths could be infinite.
- Practical solution: explore up to a given depth bound.
- We propose a metric, the path complexity, an upper bound on the number of paths needed to explore up to a given depth.

Motivation

Program Path Coverage

- Modern automated software testing techniques focus on program path coverage.
- The number of execution paths could be infinite.
- Practical solution: explore up to a given depth bound.
- We propose a metric, the path complexity, an upper bound on the number of paths needed to explore up to a given depth.
- This provides a measure of the difficulty of achieving path coverage.

Path Complexity

```
boolean passCheckl() {
    while(i<n) {
        if(p[i] != pass[i])
            return false;
        i++;
    }
return true;
}
```


Path Complexity

Path Complexity

Given a control flow graph and a length bound n, let

- count(n) be the number of paths of length exactly n.

Path Complexity

Given a control flow graph and a length bound n, let

- count(n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of $\operatorname{count}(n)$.

Path Complexity

Given a control flow graph and a length bound n, let

- count(n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Path Complexity

boolean passCheckl(){
boolean passCheckl(){
while(i<n) {
while(i<n) {
if(p[i] != pass[i])
if(p[i] != pass[i])
return false;
return false;
i++;
i++;
}
}
return true;
return true;
}
}

n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Given a control flow graph and a length bound n, let

- count (n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Path Complexity

boolean passCheckl(){
boolean passCheckl(){
while(i<n) {
while(i<n) {
if(p[i] != pass[i])
if(p[i] != pass[i])
return false;
return false;
i++;
i++;
}
}
return true;
return true;
}
}

n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Given a control flow graph and a length bound n, let

- count (n) be the number of paths of length exactly n.
- path(n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Path Complexity

boolean passCheckl(){
boolean passCheckl(){
while(i<n) {
while(i<n) {
if(p[i] != pass[i])
if(p[i] != pass[i])
return false;
return false;
i++;
i++;
}
}
return true;
return true;
}
}

n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Given a control flow graph and a length bound n, let

- count (n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Path Complexity

n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Given a control flow graph and a length bound n, let

- count (n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Path Complexity

n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Given a control flow graph and a length bound n, let

- count (n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Path Complexity

boolean passCheckl(){
boolean passCheckl(){
while(i<n) {
while(i<n) {
if(p[i] != pass[i])
if(p[i] != pass[i])
return false;
return false;
i++;
i++;
}
}
return true;
return true;
}
}

n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Given a control flow graph and a length bound n, let

- count (n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Path Complexity

boolean passCheckl(){
boolean passCheckl(){
while(i<n) {
while(i<n) {
if(p[i] != pass[i])
if(p[i] != pass[i])
return false;
return false;
i++;
i++;
}
}
return true;
return true;
}
}

n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Given a control flow graph and a length bound n, let

- count (n) be the number of paths of length exactly n.
- path (n) be the number of paths of length less than or equal n, i.e. the accumulated sum of count(n).
- Path Complexity is given by path(n).

Computing Path Complexity

```
boolean passCheckl(){
    while(i<n) {
        if(p[i] != pass[i])
            return false;
        i++;
    }
return true;
}
```


n	count (n)	path (n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
\vdots	\vdots	\vdots

Computing Path Complexity

```
boolean passCheckl(){
    while(i<n) {
        if(p[i] != pass[i])
            return false;
        i++;
    }
return true;
}
```


n	count (n)	path (n)
20	1	14
21	0	15
22	1	15
23	1	16
24	0	16
25	1	17
26	1	18
\vdots	\vdots	\vdots

Computing Path Complexity

n	count (n)	path (n)
20	1	14
21	0	15
22	1	15
23	1	16
24	0	16
25	1	17
26	1	18
\vdots	\vdots	\vdots

Appears to grow linearly... is it $\frac{2}{3} n$?

Computing Path Complexity

```
boolean passCheck2() {
    matched = true;
    while(i<n) {
        if(p[i] != pass[i])
            matched = false;
        i++;
    }
    return matched;
}
```


Computing Path Complexity

boolean passCheck2() \{ matched = true;
while(i<n) \{
if(p[i] != pass[i])
matched = false;
i++;
\}

return matched;
\}

Computing Path Complexity

boolean passCheck2() \{
matched = true;
while(i<n) \{
if(p[i] != pass[i])
matched = false;
i++;
\}
return matched;
\}

Also appears to be linear...

Computing Path Complexity

n	count (n)	path (n)
20	11	69
21	16	85
22	21	106
23	22	128
24	27	155
25	37	192
26	43	235
\vdots	\vdots	\vdots

Also appears to be linear...

Computing Path Complexity

n	count (n)	path (n)
20	11	69
21	16	85
22	21	106
23	22	128
24	27	155
25	37	192
26	43	235
\vdots	\vdots	\vdots

Also appears to be linear...or is it?

Computing Path Complexity

n	count (n)	path (n)
20	11	69
21	16	85
22	21	106
23	22	128
24	27	155
25	37	192
26	43	235
\vdots	\vdots	\vdots

Also appears to be linear...or is it? Could be polynomial or exponential.

Computing Path Complexity

The path complexity problem:

Computing Path Complexity

The path complexity problem:

- How to compute path (n) automatically?

Computing Path Complexity

The path complexity problem:

- How to compute path(n) automatically?
- What is the asymptotic behavior of path (n) ?

Matrix Exponentiation

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- path $(n)=\left(A^{n}\right)_{1, p}$

Matrix Exponentiation

- For a particular n, we can compute path (n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- $\operatorname{path}(n)=\left(A^{n}\right)_{1, p}$

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- $\operatorname{path}(n)=\left(A^{n}\right)_{1, p}$

$$
A^{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- $\operatorname{path}(n)=\left(A^{n}\right)_{1, p}$

$$
A^{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- $\operatorname{path}(n)=\left(A^{n}\right)_{1, p}$

$$
A^{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] A^{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- path $(n)=\left(A^{n}\right)_{1, p}$

$$
A^{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] A^{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] A^{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 3 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- $\operatorname{path}(n)=\left(A^{n}\right)_{1, p}$

$$
\begin{gathered}
A^{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] A^{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] A^{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 3 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\operatorname{path}(1)=1 \quad \operatorname{path}(2)=2 \quad \text { path(3) }=2 \quad \text { path(4) }=3
\end{gathered}
$$

Matrix Exponentiation

- For a particular n, we can compute path(n) using the $p \times p$ adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.
- $\operatorname{path}(n)=\left(A^{n}\right)_{1, p}$

$$
\begin{gathered}
A^{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A^{2}=\left[\begin{array}{llll}
0 & 0 & 1 & 2 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] A^{3}=\left[\begin{array}{llll}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] A^{4}=\left[\begin{array}{llll}
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 3 \\
1 & 0 & 0 & 2 \\
0 & 0 & 0 & 1
\end{array}\right] \\
\quad \operatorname{path}(1)=1 \quad \operatorname{path}(2)=2 \quad \operatorname{path}(3)=2 \quad \operatorname{path}(4)=3
\end{gathered}
$$

Drawback: repeated evaluations become expensive.

Matrix exponentiation works. Is there a better way?

Generating Functions

$$
\left.\lim _{i \rightarrow n} \pi z\right) \equiv \sum_{m=0}^{\infty} \min
$$

Generating Functions

- Generating functions are a mathematical tool for representing sequences.

Generating Functions

- Generating functions are a mathematical tool for representing sequences. (i.e. path $(n)=0,1,2,2,3,4,4, \ldots$)

Generating Functions

- Generating functions are a mathematical tool for representing sequences. (i.e. path $(n)=0,1,2,2,3,4,4, \ldots$)
- The generating function for counting paths in a graph is given by

$$
g(z)=(-1)^{m+1} \frac{\operatorname{det}(\mathbb{1}-z A: m, 1)}{\operatorname{det}(\mathbb{1}-z A)}
$$

Generating Functions

- Generating functions are a mathematical tool for representing sequences. (i.e. path $(n)=0,1,2,2,3,4,4, \ldots$)
- The generating function for counting paths in a graph is given by

$$
g(z)=(-1)^{m+1} \frac{\operatorname{det}(\mathbb{1}-z A: m, 1)}{\operatorname{det}(\mathbb{1}-z A)}
$$

- In our example CFG, the generating function is

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

Generating Functions

- Generating functions are a mathematical tool for representing sequences. (i.e. path $(n)=0,1,2,2,3,4,4, \ldots$)
- The generating function for counting paths in a graph is given by

$$
g(z)=(-1)^{m+1} \frac{\operatorname{det}(\mathbb{1}-z A: m, 1)}{\operatorname{det}(\mathbb{1}-z A)}
$$

- In our example CFG, the generating function is

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- path (n) is given by the $n^{\text {th }}$ Taylor series coefficent of $g(z)$.

$$
g(z)=\frac{g(0)}{0!} z^{0}+\frac{g^{\prime}(0)}{1!} z^{1}+\frac{g^{\prime \prime}(0)}{2!} z^{2}+\frac{g^{\prime \prime \prime}(0)}{3!} z^{3}+\ldots
$$

Generating Functions

- Generating functions are a mathematical tool for representing sequences. (i.e. path $(n)=0,1,2,2,3,4,4, \ldots$)
- The generating function for counting paths in a graph is given by

$$
g(z)=(-1)^{m+1} \frac{\operatorname{det}(\mathbb{1}-z A: m, 1)}{\operatorname{det}(\mathbb{1}-z A)}
$$

- In our example CFG, the generating function is

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- path (n) is given by the $n^{\text {th }}$ Taylor series coefficent of $g(z)$.

$$
g(z)=\frac{g(0)}{0!} z^{0}+\frac{g^{\prime}(0)}{1!} z^{1}+\frac{g^{\prime \prime}(0)}{2!} z^{2}+\frac{g^{\prime \prime \prime}(0)}{3!} z^{3}+\ldots
$$

- For our example, the Taylor-series expansion is

$$
g(z)=0 z^{0}+1 z^{1}+2 z^{2}+2 z^{3}+3 z^{4}+4 z^{5}+4 z^{6}+5 z^{7}+\ldots
$$

Generating Functions

- Generating functions are a mathematical tool for representing sequences. (i.e. path $(n)=0,1,2,2,3,4,4, \ldots$)
- The generating function for counting paths in a graph is given by

$$
g(z)=(-1)^{m+1} \frac{\operatorname{det}(\mathbb{1}-z A: m, 1)}{\operatorname{det}(\mathbb{1}-z A)}
$$

- In our example CFG, the generating function is

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- path (n) is given by the $n^{\text {th }}$ Taylor series coefficent of $g(z)$.

$$
g(z)=\frac{g(0)}{0!} z^{0}+\frac{g^{\prime}(0)}{1!} z^{1}+\frac{g^{\prime \prime}(0)}{2!} z^{2}+\frac{g^{\prime \prime \prime}(0)}{3!} z^{3}+\ldots
$$

- For our example, the Taylor-series expansion is

$$
\begin{gathered}
g(z)=0 z^{0}+1 z^{1}+2 z^{2}+2 z^{3}+3 z^{4}+4 z^{5}+4 z^{6}+5 z^{7}+\ldots \\
\operatorname{path}(6)=4
\end{gathered}
$$

Good job, Will Hunting!

Good job, Will Hunting!

Good job, Will Hunting!

Good job, Will Hunting!

$$
\begin{aligned}
\left(p_{i} \rightarrow p_{i} ; z\right) & =\sum_{n=0}^{\infty} \omega_{n}(-j) z^{3}>2_{2}^{2} \\
& =\frac{\operatorname{det}\left(\mathbb{1}_{i}-z A_{i j}\right)}{\operatorname{det}(\mathbb{1}-z A)}
\end{aligned}
$$

Good job, Will Hunting!

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}
$$

- Take a linearly independent combination of exponentiated roots:

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}
$$

- Take a linearly independent combination of exponentiated roots:

$$
\operatorname{path}(n)=c_{1} \cdot 1^{n}
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}
$$

- Take a linearly independent combination of exponentiated roots:

$$
\operatorname{path}(n)=c_{1} \cdot 1^{n}+c_{2} n \cdot 1^{n}+
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}
$$

- Take a linearly independent combination of exponentiated roots:

$$
\operatorname{path}(n)=c_{1} \cdot 1^{n}+c_{2} n \cdot 1^{n}+c_{3}\left(\frac{-1+\sqrt{3}}{2}\right)^{n}+
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}
$$

- Take a linearly independent combination of exponentiated roots:

$$
\operatorname{path}(n)=c_{1} \cdot 1^{n}+c_{2} n \cdot 1^{n}+c_{3}\left(\frac{-1+\sqrt{3}}{2}\right)^{n}+c_{4}\left(\frac{-1-\sqrt{3}}{2}\right)^{n}
$$

Closed-form Solution

A closed-form solution can be computed from the generating function.

$$
g(z)=\frac{z(1+z)}{(1-z)\left(1-z^{3}\right)}
$$

- Find the r roots of the denominator

$$
(1-z)\left(1-z^{3}\right)=0 \quad \Longrightarrow \quad z=1,1, \frac{-1+\sqrt{3} i}{2}, \frac{-1-\sqrt{3} i}{2}
$$

- Take a linearly independent combination of exponentiated roots:

$$
\operatorname{path}(n)=c_{1} \cdot 1^{n}+c_{2} n \cdot 1^{n}+c_{3}\left(\frac{-1+\sqrt{3}}{2}\right)^{n}+c_{4}\left(\frac{-1-\sqrt{3}}{2}\right)^{n}
$$

- Solve for coefficients c_{1}, \ldots, c_{r} using $g(z), g^{\prime}(z), \ldots, g^{(r)}(z)$

$$
\operatorname{path}(n)=\frac{1}{3}+\frac{2}{3} n+\left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3} i}{2}\right)^{n}+\left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3} i}{2}\right)^{n}
$$

Tight bounds for path(n)

Our solution looks very...

Tight bounds for path(n)

Our solution looks very... complex

$$
\operatorname{path}(n)=\frac{1}{3}+\frac{2}{3} n+\left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3} i}{2}\right)^{n}+\left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3} i}{2}\right)^{n}
$$

Tight bounds for path(n)

Our solution looks very... complex

$$
\operatorname{path}(n)=\frac{1}{3}+\frac{2}{3} n+\left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3} i}{2}\right)^{n}+\left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3} i}{2}\right)^{n}
$$

- For any complex number w, we have the tight bounds

$$
-2|w|^{n} \leq\left|w^{n}+\bar{w}^{n}\right| \leq 2|w|^{n}
$$

Tight bounds for path(n)

Our solution looks very... complex

$$
\operatorname{path}(n)=\frac{1}{3}+\frac{2}{3} n+\left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3} i}{2}\right)^{n}+\left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3} i}{2}\right)^{n}
$$

- For any complex number w, we have the tight bounds

$$
\begin{gathered}
-2|\boldsymbol{w}|^{n} \leq\left|\boldsymbol{w}^{n}+\bar{w}^{n}\right| \leq 2|\boldsymbol{w}|^{n} \\
-\frac{1}{3} \leq\left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3} i}{2}\right)^{n}+\left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3} i}{2}\right)^{n} \leq \frac{1}{3}
\end{gathered}
$$

Tight bounds for path(n)

Our solution looks very... complex

$$
\operatorname{path}(n)=\frac{1}{3}+\frac{2}{3} n+\left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3} i}{2}\right)^{n}+\left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3} i}{2}\right)^{n}
$$

- For any complex number w, we have the tight bounds

$$
\begin{gathered}
-2|\boldsymbol{w}|^{n} \leq\left|\boldsymbol{w}^{n}+\bar{w}^{n}\right| \leq 2|\boldsymbol{w}|^{n} \\
-\frac{1}{3} \leq\left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3} i}{2}\right)^{n}+\left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3} i}{2}\right)^{n} \leq \frac{1}{3}
\end{gathered}
$$

Now, it looks much simpler:

$$
\frac{2 n}{3} \leq \operatorname{path}(n) \leq \frac{2 n}{3}+\frac{2}{3}
$$

Tight bounds for path(n)

Asymptotic Behavior

- We extract the highest order term using standard asymptotic analysis from calculus

$$
f=\Theta(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

Asymptotic Behavior

- We extract the highest order term using standard asymptotic analysis from calculus

$$
f=\Theta(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

- Applied to our examples:

Asymptotic Behavior

- We extract the highest order term using standard asymptotic analysis from calculus

$$
f=\Theta(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

- Applied to our examples:
- Function passCheck1()

$$
\operatorname{path}(n)=\Theta(n)
$$

Asymptotic Behavior

- We extract the highest order term using standard asymptotic analysis from calculus

$$
f=\Theta(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1
$$

- Applied to our examples:
- Function passCheck1()

$$
\operatorname{path}(n)=\Theta(n)
$$

- Function passCheck2()

$$
\operatorname{path}(n)=\Theta\left(1.221^{n}\right)
$$

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.
Examples from Java SDK 7.

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
        "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
        "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
        "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


- Path Complexity: 4

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
        "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


- Path Complexity: 4
- Asymptotic: $\Theta(1)$

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.
Examples from Java SDK 7.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
        "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


- Path Complexity: 4
- Asymptotic: $\Theta(1)$
- Complexity Class: Constant

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
public Matcher reset() {
    first = -1;
    last = 0;
    oldLast = -1;
    for(int i=0; i<groups.length; i++)
        groups[i] = -1;
    for(int i=0; i<locals.length; i++)
        locals[i] = -1;
    lastAppendPosition = 0;
    from = 0;
    to = getTextLength();
    return this;
}
```


Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
public Matcher reset() {
    first = -1;
    last = 0;
    oldLast = -1;
    for(int i=0; i<groups.length; i++)
        groups[i] = -1;
    for(int i=0; i<locals.length; i++)
        locals[i] = -1;
    lastAppendPosition = 0;
    from = 0;
    to = getTextLength();
    return this;
}
```


Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
public Matcher reset() {
    first = -1;
    last = 0;
    oldLast = -1;
    for(int i=0; i<groups.length; i++)
        groups[i] = -1;
    for(int i=0; i<locals.length; i++)
        locals[i] = -1;
    lastAppendPosition = 0;
    from = 0;
    to = getTextLength();
    return this;
}
```


- Path Complexity: $0.12 n^{2}+1.25 n+3$

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
public Matcher reset() {
    first = -1;
    last = 0;
    oldLast = -1;
    for(int i=0; i<groups.length; i++)
        groups[i] = - 1;
    for(int i=0; i<locals.length; i++)
        locals[i] = -1;
    lastAppendPosition = 0;
    from = 0;
    to = getTextLength();
    return this;
}
```


- Path Complexity: $0.12 n^{2}+1.25 n+3$
- Asymptotic: $\Theta\left(n^{2}\right)$

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
public Matcher reset() {
    first = -1;
    last = 0;
    oldLast = -1;
    for(int i=0; i<groups.length; i++)
        groups[i] = - 1;
    for(int i=0; i<locals.length; i++)
        locals[i] = -1;
    lastAppendPosition = 0;
    from = 0;
    to = getTextLength();
    return this;
}
```


- Path Complexity: $0.12 n^{2}+1.25 n+3$
- Asymptotic: $\Theta\left(n^{2}\right)$
- Complexity Class: Polynomial

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
    int low = fromIndex;
    int high = toIndex - 1;
    while (low <= high) {
        int mid = (low + high) >>> 1;
        long midVal = a[mid];
        if (midVal < key)
            low = mid + 1;
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```


Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
    int low = fromIndex;
    int high = toIndex - 1;
    while (low <= high) {
        int mid = (low + high) >>> 1;
        long midVal = a[mid];
        if (midVal < key)
            low = mid + 1;
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```


Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
    int low = fromIndex;
    int high = toIndex - 1;
    while (low <= high) {
        int mid = (low + high) >>> 1;
        long midVal = a[mid];
        if (midVal < key)
            low = mid + 1;
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```


- Path Complexity: $(6.86)(1.17)^{n}+(0.22)(1.1)^{n}+(0.13)(0.84)^{n}+2$

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
    int low = fromIndex;
    int high = toIndex - 1;
    while (low <= high) {
        int mid = (low + high) >>> 1;
        long midVal = a[mid];
        if (midVal < key)
            low = mid + 1;
        else if (midVal > key)
            high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```


- Path Complexity: $(6.86)(1.17)^{n}+(0.22)(1.1)^{n}+(0.13)(0.84)^{n}+2$
- Asymptotic: $\Theta\left(1.17^{n}\right)$

Complexity Classes

Classify path complexities as constant, polynomial, or exponential.
Examples from Java SDK 7.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
    int low = fromIndex;
    int high = toIndex - 1;
    while (low <= high) {
        int mid = (low + high) >>> 1;
        long midVal = a[mid];
        if (midVal < key)
            low = mid + 1;
        else if (midVal > key)
                high = mid - 1;
        else
            return mid; // key found
    }
    return -(low + 1); // key not found.
}
```


- Path Complexity: $(6.86)(1.17)^{n}+(0.22)(1.1)^{n}+(0.13)(0.84)^{n}+2$
- Asymptotic: $\Theta\left(1.17^{n}\right)$
- Complexity Class: Exponential

Other Complexity Measures

Other Complexity Measures

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
- A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.

Other Complexity Measures

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
- A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.
- NPATH Complexity: the number of acyclic paths in the CFG.

Other Complexity Measures

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
- A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.
- NPATH Complexity: the number of acyclic paths in the CFG.
- Limitation: Both cyclomatic and NPATH return constant numbers, regardless of loops.

Other Complexity Measures

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
- A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.
- NPATH Complexity: the number of acyclic paths in the CFG.
- Limitation: Both cyclomatic and NPATH return constant numbers, regardless of loops.
- Comparison of cyclomatic, NPATH, and path complexities.

Method	Cyclomatic Complexity	NPATH Complexity	Path Complexity	Asymptotic Complexity
rangeCheck()	4	4	4	$\Theta(1)$
reset()	3	4	$0.12 n^{2}+1.25 n+3$	$\Theta\left(n^{2}\right)$
binarySearch0()	4	4	$(6.86) 1.17^{n}+(0.22) 1.1^{n}$ $+(0.13)(0.84)^{n}+2$	$\Theta\left(1.17^{n}\right)$

Complexity Comparison

Pattern	Control Flow Graph	Cyclomatic Complexity	NPATH Complexity	Asymptotic Complexity
K If-Else in sequence		$K+1$	2^{K}	2^{K}
K If-Else nested		$K+1$	$K+1$	$K+1$
K Loops in sequence		$K+1$	2^{K}	$\Theta\left(n^{K}\right)$
K Loops nested	$1 \leftrightarrows 2 \leftrightarrows \mathrm{~K}$	$K+1$	$K+1$	$\Theta\left(b^{n}\right)$

Experiments

- Tested our analysis on Java 7 SDK (132K methods, $\approx 2.5 \mathrm{hr}$.) and Apache Commons (44 K methods, $\approx 1 \mathrm{hr}$.) libraries.
- Separated methods into complexity classes:
- $C=1 \quad$ Unique path
- $C>1$ Constant number of paths
- $n^{k} \quad$ Polynomial
- $b^{n} \quad$ Exponential

Experiments

- Tested our analysis on Java 7 SDK (132K methods, $\approx 2.5 \mathrm{hr}$.) and Apache Commons (44 K methods, $\approx 1 \mathrm{hr}$.) libraries.
- Separated methods into complexity classes:
- $C=1 \quad$ Unique path
- $C>1$ Constant number of paths
- $n^{k} \quad$ Polynomial
- $b^{n} \quad$ Exponential

Apache Commons

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

- vlab.cs.ucsb.edu/PAC/

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

- vlab.cs.ucsb.edu/PAC/
- Implemented using ASM Framework and Mathematica.

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

- vlab.cs.ucsb.edu/PAC/
- Implemented using ASM Framework and Mathematica.
- Source code and experimental results are available.

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

- vlab.cs.ucsb.edu/PAC/
- Implemented using ASM Framework and Mathematica.
- Source code and experimental results are available.
- Web version.

1. Upload Java .class or . jar file.
2. Output a table of cyclomatic, NPATH, and (asymptotic) path complexities for all methods.

Future Work

- Experimentally validate that path complexity is a good measure of the difficulty of acheiving path coverage.
- Extend analysis to inter-procedural calls using the theory of generating functions for generative grammars.
- Path complexity may count infeasible paths-provides only an upper bound. Refine path complexity to consider simple path conditions.
- Apply path complexity results to side-channel analysis for timing attacks.

Thank you.

