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Motivation

Program Path Coverage

I Modern automated software testing techniques focus on program
path coverage.

I The number of execution paths could be infinite.
I Practical solution: explore up to a given depth bound.
I We propose a metric, the path complexity, an upper bound on

the number of paths needed to explore up to a given depth.
I This provides a measure of the difficulty of achieving path

coverage.
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boolean passCheck1(){
while(i<n){
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return false;
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Given a control flow graph and a length bound n, let

I count(n) be the number of paths of length exactly n.
I path(n) be the number of paths of length less than or equal n,

i.e. the accumulated sum of count(n).
I Path Complexity is given by path(n).
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Matrix Exponentiation

I For a particular n, we can compute path(n) using the p × p
adjacency matrix, A, of the CFG, augmented with an additional 1
entry in the final column and final row.

I path(n) = (An)1,p
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0 0 1 0
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A2 =
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1 0 0 1
0 1 0 1
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A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.
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entry in the final column and final row.

I path(n) = (An)1,p

1

2

 1 

4

 1 

 1 

3

 1 

 1 

A1 =


0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 1

A2 =


0 0 1 2
1 0 0 1
0 1 0 1
0 0 0 1

A3 =


1 0 0 2
0 1 0 2
0 0 1 2
0 0 0 1

A4 =


0 1 0 3
0 0 1 3
1 0 0 2
0 0 0 1



path(1) = 1 path(2) = 2 path(3) = 2 path(4) = 3

Drawback: repeated evaluations become expensive.
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Generating Functions
I Generating functions are a mathematical tool for representing

sequences.

(i.e. path(n) = 0,1,2,2,3,4,4, . . .)
I The generating function for counting paths in a graph is given by

g(z) = (−1)m+1 det(1− zA : m,1)

det(1− zA)
I In our example CFG, the generating function is

g(z) =
z(1 + z)

(1− z)(1− z3)

I path(n) is given by the nth Taylor series coefficent of g(z).

g(z) =
g(0)

0!
z0 +

g′(0)

1!
z1 +

g′′(0)

2!
z2 +

g′′′(0)

3!
z3 + ...

I For our example, the Taylor-series expansion is

g(z) = 0z0 + 1z1 + 2z2 + 2z3 + 3z4 + 4z5 + 4 z 6 + 5z7 + . . .

path( 6 ) = 4
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Closed-form Solution
A closed-form solution can be computed from the generating function.

g(z) =
z(1 + z)

(1− z)(1− z3)

I Find the r roots of the denominator

(1− z)(1− z3) = 0 =⇒ z = 1,1,
−1 +

√
3i

2
,
−1−

√
3i

2

I Take a linearly independent combination of exponentiated roots:

path(n) = c1 · 1n + c2n · 1n + c3

(
−1 +

√
3

2

)n

+ c4

(
−1−

√
3

2

)n

I Solve for coefficients c1, . . . , cr using g(z),g′(z), . . . ,g(r)(z)

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n
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Tight bounds for path(n)

Our solution looks very...

complex

path(n) =
1
3

+
2
3

n +

(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

I For any complex number w , we have the tight bounds

−2|w |n ≤ |wn + wn| ≤ 2|w |n

−
1
3
≤
(
−3 +

√
3

18

)(
−1 +

√
3i

2

)n

+

(
−3−

√
3

18

)(
−1−

√
3i

2

)n

≤
1
3

Now, it looks much simpler:

2n
3
≤ path(n) ≤ 2n

3
+

2
3
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Tight bounds for path(n)
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Asymptotic Behavior

I We extract the highest order term using standard asymptotic
analysis from calculus

f = Θ(g(n))⇔ lim
n→∞

f (n)

g(n)
= 1

I Applied to our examples:
I Function passCheck1()

path(n) = Θ (n)

I Function passCheck2()

path(n) = Θ
(
1.221n)
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Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static void rangeCheck(int length,
int fromIndex, int toIndex) {

if (fromIndex > toIndex) {
throw new IllegalArgumentException(
"fromIndex(" + fromIndex + ") >
toIndex(" + toIndex + ")");

}
if (fromIndex < 0) {

throw new ArrayIndexOutOfBoundsException(fromIndex);
}
if (toIndex > length) {

throw new ArrayIndexOutOfBoundsException(toIndex);
}

}

I Path Complexity: 4
I Asymptotic: Θ(1)

I Complexity Class: Constant
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Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

public Matcher reset() {
first = -1;
last = 0;
oldLast = -1;
for(int i=0; i<groups.length; i++)
groups[i] = -1;

for(int i=0; i<locals.length; i++)
locals[i] = -1;

lastAppendPosition = 0;
from = 0;
to = getTextLength();
return this;

}

I Path Complexity: 0.12n2 + 1.25n + 3
I Asymptotic: Θ(n2)

I Complexity Class: Polynomial
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Complexity Classes
Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

private static int binarySearch0(long[] a,
int fromIndex, int toIndex, long key) {

int low = fromIndex;
int high = toIndex - 1;
while (low <= high) {
int mid = (low + high) >>> 1;
long midVal = a[mid];
if (midVal < key)
low = mid + 1;

else if (midVal > key)
high = mid - 1;

else
return mid; // key found

}
return -(low + 1); // key not found.

}

I Path Complexity: (6.86)(1.17)n + (0.22)(1.1)n + (0.13)(0.84)n + 2
I Asymptotic: Θ(1.17n)
I Complexity Class: Exponential
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Other Complexity Measures

I Cyclomatic complexity: the maximum number of linearly
independent paths in the CFG.

I A set of paths is linearly independent if and only if each path
contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.
I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2



Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.
I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2



Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.

I Limitation: Both cyclomatic and NPATH return constant numbers,
regardless of loops.

I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2



Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.

I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2



Other Complexity Measures
I Cyclomatic complexity: the maximum number of linearly

independent paths in the CFG.
I A set of paths is linearly independent if and only if each path

contains at least one edge that is not included in any other path.

I NPATH Complexity: the number of acyclic paths in the CFG.
I Limitation: Both cyclomatic and NPATH return constant numbers,

regardless of loops.
I Comparison of cyclomatic, NPATH, and path complexities.

Method Cyclomatic NPATH Path Asymptotic
Complexity Complexity Complexity Complexity

rangeCheck() 4 4 4 Θ(1)

reset() 3 4 0.12n2 + 1.25n + 3 Θ(n2)

binarySearch0() 4 4 (6.86)1.17n + (0.22)1.1n Θ(1.17n)
+(0.13)(0.84)n + 2



Complexity Comparison
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Experiments
I Tested our analysis on Java 7 SDK (132K methods, ≈ 2.5 hr.)

and Apache Commons (44K methods, ≈ 1 hr.) libraries.
I Separated methods into complexity classes:

I C = 1 Unique path
I C > 1 Constant number of paths
I nk Polynomial
I bn Exponential

Java 7 SDK

C = 1

C > 1 nk
bn

60.0%

30.1%

5.3%

4.6%

Apache Commons

C = 1

C > 1 nk
bn

60.8%

27.0%

6.7%

5.5%
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Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

I vlab.cs.ucsb.edu/PAC/

I Implemented using ASM Framework and MATHEMATICA.
I Source code and experimental results are available.

I Web version.
1. Upload Java .class or .jar file.
2. Output a table of cyclomatic, NPATH, and (asymptotic) path

complexities for all methods.

vlab.cs.ucsb.edu/PAC/
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Future Work

I Experimentally validate that path complexity is a good measure
of the difficulty of acheiving path coverage.

I Extend analysis to inter-procedural calls using the theory of
generating functions for generative grammars.

I Path complexity may count infeasible paths–provides only an
upper bound. Refine path complexity to consider simple path
conditions.

I Apply path complexity results to side-channel analysis for timing
attacks.



Thank you.
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