Automatically Computing Path Complexity of Programs

Lucas Bang, Abdulbaki Aydin, Tevfik Bultan

{bang,baki,bultan}@cs.ucsb.edu

Department of Computer Science University of California, Santa Barbara

ESEC FSE 2015

PAth Complexity Analyzer (PAC)

Can you solve it, Will Hunting?

Can you solve it, Will Hunting?

Give the graph / Find 1) the adjacency matrix A 2) the matrix giving the number of 3 step walks 3) the generating function for walky From point 2 -> 1 4) His generating function for walks from points 1->3

Outline

Motivation

Path Complexity

Experiments

Program Path Coverage

 Modern automated software testing techniques focus on program path coverage.

- Modern automated software testing techniques focus on program path coverage.
- ► The number of execution paths could be infinite.

- Modern automated software testing techniques focus on program path coverage.
- The number of execution paths could be infinite.
- Practical solution: explore up to a given depth bound.

- Modern automated software testing techniques focus on program path coverage.
- The number of execution paths could be infinite.
- Practical solution: explore up to a given depth bound.
- We propose a metric, the **path complexity**, an upper bound on the number of paths needed to explore up to a given depth.

- Modern automated software testing techniques focus on program path coverage.
- The number of execution paths could be infinite.
- Practical solution: explore up to a given depth bound.
- We propose a metric, the **path complexity**, an upper bound on the number of paths needed to explore up to a given depth.
- This provides a measure of the difficulty of achieving path coverage.

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
      return false;
    i++;
    }
  return true;
}</pre>
```

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
    return false;
    i++;
  }
return true;
}</pre>
```

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
    return false;
    i++;
  }
 return true;
  }
</pre>
```

Given a control flow graph and a length bound *n*, let

count(n) be the number of paths of length exactly n.

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
    return false;
    i++;
  }
  return true;
  }
  4
  3</pre>
```

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
    return false;
    i++;
  }
  return true;
  }
  4
  3</pre>
```

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

- count(n) be the number of paths of length exactly n.
- *path*(*n*) be the number of paths of length less than or equal n, i.e. the accumulated sum of *count*(*n*).
- Path Complexity is given by path(n).

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
      return false;
    i++;
    }
  return true;
  }
  4</pre>
```

1

2

3

n	count(n)	path(n)
0	0	0
1	1	1
2	1	2
3	0	2
4	1	3
5	1	4
6	0	4
:		•

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
      return false;
    i++;
    }
  return true;
  }
  4</pre>
```

1

2

3

n	count(n)	path(n)
20	1	14
21	0	15
22	1	15
23	1	16
24	0	16
25	1	17
26	1	18
:	-	-

```
boolean passCheck1() {
  while(i<n) {
    if(p[i] != pass[i])
    return false;
    i++;
  }
 return true;
 }
</pre>
```

n	count(n)	path(n)
20	1	14
21	0	15
22	1	15
23	1	16
24	0	16
25	1	17
26	1	18
:		:

Appears to grow linearly... is it $\frac{2}{3}n$?

```
boolean passCheck2(){
  matched = true;
  while(i<n){
    if(p[i] != pass[i])
    matched = false;
    i++;
  }
  return matched;
}</pre>
```

```
boolean passCheck2() {
  matched = true;
  while(i<n) {
    if(p[i] != pass[i])
    matched = false;
    i++;
  }
  return matched;
}</pre>
```

```
boolean passCheck2() {
  matched = true;
  while(i<n) {
    if(p[i] != pass[i])
    matched = false;
    i++;
  }
  return matched;
}</pre>
```

n	count(n)	path(n)
0	0	0
1	1	1
2 3	0	1
	0	1
4	1	2
5	1	3
6	0	3
:	:	:

Also appears to be linear...

```
boolean passCheck2() {
  matched = true;
  while(i<n) {
    if(p[i] != pass[i])
    matched = false;
    i++;
  }
  return matched;
}</pre>
```

n	count(n)	path(n)
20	11	69
21	16	85
22	21	106
23	22	128
24	27	155
25	37	192
26	43	235
:	:	:

Also appears to be linear...

```
boolean passCheck2() {
  matched = true;
  while(i<n) {
    if(p[i] != pass[i])
    matched = false;
    i++;
  }
  return matched;
}</pre>
```

n	count(n)	path(n)
20	11	69
21	16	85
22	21	106
23	22	128
24	27	155
25	37	192
26	43	235
:	:	:

Also appears to be linear...or is it?

```
boolean passCheck2() {
  matched = true;
  while(i<n) {
    if(p[i] != pass[i])
    matched = false;
    i++;
  }
  return matched;
}</pre>
```

n	count(n)	path(n)
20	11	69
21	16	85
22	21	106
23	22	128
24	27	155
25	37	192
26	43	235
:	:	:

Also appears to be linear...or is it? Could be polynomial or exponential.

The path complexity problem:

The path complexity problem:

▶ How to compute *path*(*n*) **automatically**?

The path complexity problem:

- ▶ How to compute *path*(*n*) **automatically**?
- What is the asymptotic behavior of path(n)?

For a particular n, we can compute path(n) using the p × p adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.

• $path(n) = (A^n)_{1,p}$

•
$$path(n) = (A^n)_{1,\mu}$$

For a particular n, we can compute path(n) using the p × p adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.

• $path(n) = (A^n)_{1,p}$

$$A^{1} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$path(n) = (A^n)_{1,p}$$

$$A^{1} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{2} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$path(n) = (A^n)_{1,\mu}$$

$$A^{1} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{2} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{3} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$path(n) = (A^n)_{1,\mu}$$

$$A^{1} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{2} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{3} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{4} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

•
$$path(n) = (A^n)_{1,\mu}$$

$$A^{1} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{2} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{3} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{4} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$path(1) = 1 \qquad path(2) = 2 \qquad path(3) = 2 \qquad path(4) = 3$$

For a particular n, we can compute path(n) using the p × p adjacency matrix, A, of the CFG, augmented with an additional 1 entry in the final column and final row.

•
$$path(n) = (A^n)_{1,\mu}$$

$$A^{1} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{2} = \begin{bmatrix} 0 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{3} = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix} A^{4} = \begin{bmatrix} 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 3 \\ 1 & 0 & 0 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$path(1) = 1 \qquad path(2) = 2 \qquad path(3) = 2 \qquad path(4) = 3$$

Drawback: repeated evaluations become expensive.

Matrix exponentiation works. Is there a better way?

 Generating functions are a mathematical tool for representing sequences.

Generating functions are a mathematical tool for representing sequences. (i.e. path(n) = 0, 1, 2, 2, 3, 4, 4, ...)

- Generating functions are a mathematical tool for representing sequences. (i.e. path(n) = 0, 1, 2, 2, 3, 4, 4, ...)
- The generating function for counting paths in a graph is given by

$$g(z) = (-1)^{m+1} \frac{\det(\mathbb{1} - zA : m, 1)}{\det(\mathbb{1} - zA)}$$

- Generating functions are a mathematical tool for representing sequences. (i.e. path(n) = 0, 1, 2, 2, 3, 4, 4, ...)
- The generating function for counting paths in a graph is given by

$$g(z) = (-1)^{m+1} \frac{\det(\mathbb{1} - zA : m, 1)}{\det(\mathbb{1} - zA)}$$

In our example CFG, the generating function is

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

- Generating functions are a mathematical tool for representing sequences. (i.e. path(n) = 0, 1, 2, 2, 3, 4, 4, ...)
- The generating function for counting paths in a graph is given by

$$g(z) = (-1)^{m+1} \frac{\det(\mathbb{1} - zA : m, 1)}{\det(\mathbb{1} - zA)}$$

In our example CFG, the generating function is

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

• path(n) is given by the n^{th} Taylor series coefficient of g(z).

$$g(z) = \frac{g(0)}{0!}z^{0} + \frac{g'(0)}{1!}z^{1} + \frac{g''(0)}{2!}z^{2} + \frac{g'''(0)}{3!}z^{3} + \dots$$

- Generating functions are a mathematical tool for representing sequences. (i.e. path(n) = 0, 1, 2, 2, 3, 4, 4, ...)
- The generating function for counting paths in a graph is given by

$$g(z) = (-1)^{m+1} \frac{\det(\mathbb{1} - zA : m, 1)}{\det(\mathbb{1} - zA)}$$

In our example CFG, the generating function is

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

• path(n) is given by the n^{th} Taylor series coefficient of g(z).

$$g(z) = \frac{g(0)}{0!}z^0 + \frac{g'(0)}{1!}z^1 + \frac{g''(0)}{2!}z^2 + \frac{g'''(0)}{3!}z^3 + \dots$$

For our example, the Taylor-series expansion is

$$g(z) = 0z^{0} + 1z^{1} + 2z^{2} + 2z^{3} + 3z^{4} + 4z^{5} + 4z^{6} + 5z^{7} + \dots$$

- Generating functions are a mathematical tool for representing sequences. (i.e. path(n) = 0, 1, 2, 2, 3, 4, 4, ...)
- The generating function for counting paths in a graph is given by

$$g(z) = (-1)^{m+1} \frac{\det(\mathbb{1} - zA : m, 1)}{\det(\mathbb{1} - zA)}$$

In our example CFG, the generating function is

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

• path(n) is given by the n^{th} Taylor series coefficient of g(z).

$$g(z) = \frac{g(0)}{0!}z^0 + \frac{g'(0)}{1!}z^1 + \frac{g''(0)}{2!}z^2 + \frac{g'''(0)}{3!}z^3 + \dots$$

For our example, the Taylor-series expansion is

$$g(z) = 0z^{0} + 1z^{1} + 2z^{2} + 2z^{3} + 3z^{4} + 4z^{5} + 4z^{6} + 5z^{7} + \dots$$

$$path(6) = 4$$

This is correct. Who did this?

This is correct. Who did this?

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

$$(1-z)(1-z^3)=0 \implies z=1,$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

$$(1-z)(1-z^3) = 0 \implies z = 1, 1,$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

$$(1-z)(1-z^3)=0 \implies z=1,1,\frac{-1+\sqrt{3}i}{2},$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

$$(1-z)(1-z^3) = 0 \implies z = 1, 1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

Find the r roots of the denominator

$$(1-z)(1-z^3) = 0 \implies z = 1, 1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$$

Take a linearly independent combination of exponentiated roots:

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

Find the r roots of the denominator

$$(1-z)(1-z^3) = 0 \implies z = 1, 1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$$

Take a linearly independent combination of exponentiated roots:

$$path(n) = c_1 \cdot 1^n$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

Find the r roots of the denominator

$$(1-z)(1-z^3) = 0 \implies z = 1, 1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$$

Take a linearly independent combination of exponentiated roots:

 $path(n) = c_1 \cdot 1^n + c_2 n \cdot 1^n + c_2 n$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

Find the r roots of the denominator

$$(1-z)(1-z^3) = 0 \implies z = 1, 1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$$

Take a linearly independent combination of exponentiated roots:

$$path(n) = c_1 \cdot 1^n + c_2 n \cdot 1^n + c_3 \left(\frac{-1 + \sqrt{3}}{2}\right)^n + c_3 \left(\frac{-1 + \sqrt{3}}{2$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

Find the r roots of the denominator

$$(1-z)(1-z^3) = 0 \implies z = 1, 1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$$

Take a linearly independent combination of exponentiated roots:

$$path(n) = c_1 \cdot 1^n + c_2 n \cdot 1^n + c_3 \left(\frac{-1 + \sqrt{3}}{2}\right)^n + c_4 \left(\frac{-1 - \sqrt{3}}{2}\right)^n$$

A closed-form solution can be computed from the generating function.

$$g(z) = \frac{z(1+z)}{(1-z)(1-z^3)}$$

Find the r roots of the denominator

$$(1-z)(1-z^3) = 0 \implies z = 1, 1, \frac{-1+\sqrt{3}i}{2}, \frac{-1-\sqrt{3}i}{2}$$

Take a linearly independent combination of exponentiated roots:

$$path(n) = c_1 \cdot 1^n + c_2 n \cdot 1^n + c_3 \left(\frac{-1 + \sqrt{3}}{2}\right)^n + c_4 \left(\frac{-1 - \sqrt{3}}{2}\right)^n$$

Solve for coefficients c_1, \ldots, c_r using $g(z), g'(z), \ldots, g^{(r)}(z)$

$$path(n) = \frac{1}{3} + \frac{2}{3}n + \left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3}i}{2}\right)^n$$

Our solution looks very...

Our solution looks very... complex

$$path(n) = \frac{1}{3} + \frac{2}{3}n + \left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3}i}{2}\right)^n$$

Our solution looks very... complex

$$path(n) = \frac{1}{3} + \frac{2}{3}n + \left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3}i}{2}\right)^n$$

► For any complex number *w*, we have the tight bounds

$$-2|w|^n \leq |w^n + \overline{w}^n| \leq 2|w|^n$$

Our solution looks very... complex

$$path(n) = \frac{1}{3} + \frac{2}{3}n + \left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3}i}{2}\right)^n$$

► For any complex number *w*, we have the tight bounds

$$-2|w|^n \le |w^n + \overline{w}^n| \le 2|w|^n$$
$$-\frac{1}{3} \le \left(\frac{-3+\sqrt{3}}{18}\right) \left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{-3-\sqrt{3}}{18}\right) \left(\frac{-1-\sqrt{3}i}{2}\right)^n \le \frac{1}{3}$$

Our solution looks very... complex

$$path(n) = \frac{1}{3} + \frac{2}{3}n + \left(\frac{-3+\sqrt{3}}{18}\right)\left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{-3-\sqrt{3}}{18}\right)\left(\frac{-1-\sqrt{3}i}{2}\right)^n$$

► For any complex number *w*, we have the tight bounds

$$-2|w|^n \le |w^n + \overline{w}^n| \le 2|w|^n$$
$$-\frac{1}{3} \le \left(\frac{-3+\sqrt{3}}{18}\right) \left(\frac{-1+\sqrt{3}i}{2}\right)^n + \left(\frac{-3-\sqrt{3}}{18}\right) \left(\frac{-1-\sqrt{3}i}{2}\right)^n \le \frac{1}{3}$$

Now, it looks much simpler:

$$\frac{2n}{3} \le path(n) \le \frac{2n}{3} + \frac{2}{3}$$

 We extract the highest order term using standard asymptotic analysis from calculus

$$f = \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

 We extract the highest order term using standard asymptotic analysis from calculus

$$f = \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

Applied to our examples:

 We extract the highest order term using standard asymptotic analysis from calculus

$$f = \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

- Applied to our examples:
 - Function passCheck1()

 $path(n) = \Theta(n)$

 We extract the highest order term using standard asymptotic analysis from calculus

$$f = \Theta(g(n)) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1$$

- Applied to our examples:
 - Function passCheck1 ()

$$path(n) = \Theta(n)$$

Function passCheck2 ()

$$path(n) = \Theta(1.221^n)$$

Classify path complexities as constant, polynomial, or exponential.

Classify path complexities as constant, polynomial, or exponential.

Classify path complexities as constant, polynomial, or exponential.

```
Examples from Java SDK 7.
```

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
        "fromIndex(" + fromIndex + ") >
        toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```

Classify path complexities as constant, polynomial, or exponential.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
        "fromIndex(" + fromIndex + ") >
        toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
            "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


Path Complexity: 4

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
            "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
    }
    if (fromIndex < 0) {
        throw new ArrayIndexOutOfBoundsException(fromIndex);
    }
    if (toIndex > length) {
        throw new ArrayIndexOutOfBoundsException(toIndex);
    }
}
```


Path Complexity: 4

```
► Asymptotic: Θ(1)
```

Classify path complexities as constant, polynomial, or exponential.

```
private static void rangeCheck(int length,
    int fromIndex, int toIndex) {
    if (fromIndex > toIndex) {
        throw new IllegalArgumentException(
            "fromIndex(" + fromIndex + ") >
            toIndex(" + toIndex + ")");
        }
        if (fromIndex < 0) {
            throw new ArrayIndexOutOfBoundsException(fromIndex);
        }
        if (toIndex > length) {
            throw new ArrayIndexOutOfBoundsException(toIndex);
        }
    }
}
```


- Path Complexity: 4
- ► Asymptotic: Θ(1)
- Complexity Class: Constant

Classify path complexities as constant, polynomial, or exponential.

```
Examples from Java SDK 7.
```

```
public Matcher reset() {
  first = -1;
  last = 0;
  oldLast = -1;
  for(int i=0; i<groups.length; i++)
   groups[i] = -1;
  for(int i=0; i<locals.length; i++)
   locals[i] = -1;
  lastAppendPosition = 0;
  from = 0;
  to = getTextLength();
  return this;
}</pre>
```

Classify path complexities as constant, polynomial, or exponential.

```
public Matcher reset() {
  first = -1;
  last = 0;
  oldLast = -1;
  for(int i=0; i<groups.length; i++)
    groups[i] = -1;
  for(int i=0; i<locals.length; i++)
    locals[i] = -1;
  lastAppendPosition = 0;
  from = 0;
  to = getTextLength();
  return this;
}</pre>
```


Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
public Matcher reset() {
  first = -1;
  last = 0;
  oldLast = -1;
  for(int i=0; i<groups.length; i++)
   groups[i] = -1;
  for(int i=0; i<locals.length; i++)
   locals[i] = -1;
  lastAppendPosition = 0;
  from = 0;
  to = getTextLength();
  return this;
}</pre>
```


• Path Complexity: $0.12n^2 + 1.25n + 3$

Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
public Matcher reset() {
    first = -1;
    last = 0;
    oldLast = -1;
    for (int i=0; i<groups.length; i++)
    groups[i] = -1;
    for (int i=0; i<locals.length; i++)
        locals[i] = -1;
    lastAppendPosition = 0;
    from = 0;
    to = getTextLength();
    return this;
}</pre>
```


Path Complexity: 0.12n² + 1.25n + 3

```
► Asymptotic: Θ(n<sup>2</sup>)
```

Classify path complexities as constant, polynomial, or exponential.

```
public Matcher reset() {
  first = -1;
  last = 0;
  oldLast = -1;
  for(int i=0; i<groups.length; i++)
   groups[i] = -1;
  for(int i=0; i<locals.length; i++)
   locals[i] = -1;
  lastAppendPosition = 0;
  from = 0;
  to = getTextLength();
  return this;
}</pre>
```


- Path Complexity: 0.12n² + 1.25n + 3
- ► Asymptotic: Θ(n²)
- Complexity Class: Polynomial

Classify path complexities as constant, polynomial, or exponential.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
        int high = toIndex;
        int high = toIndex - 1;
        while (low <= high) {
            int mid = (low + high) >>> 1;
            long midVal = a[mid];
            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1); // key not found.
    }
```

Classify path complexities as constant, polynomial, or exponential.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
        int high = toIndex - 1;
        while (low <= high) {
            int mid = (low + high) >>> 1;
            long midVal = a[mid];
            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
        else
                return mid; // key found
        }
        return -(low + 1); // key not found.
    }
```


Classify path complexities as constant, polynomial, or exponential.

Examples from Java SDK 7.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
        int low = fromIndex;
        int high = toIndex - 1;
        while (low <= high) {
            int mid = (low + high) >>> 1;
            long midVal = a[mid];
            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return - (low + 1); // key not found.
```


▶ Path Complexity: $(6.86)(1.17)^n + (0.22)(1.1)^n + (0.13)(0.84)^n + 2$

Classify path complexities as constant, polynomial, or exponential.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
        int low = fromIndex;
        int high = toIndex - 1;
        while (low <= high) {
            int mid = (low + high) >>> 1;
            long midVal = a[mid];
            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return - (low + 1); // key not found.
```


- ▶ Path Complexity: $(6.86)(1.17)^n + (0.22)(1.1)^n + (0.13)(0.84)^n + 2$
- ► Asymptotic: Θ(1.17ⁿ)

Classify path complexities as constant, polynomial, or exponential.

```
private static int binarySearch0(long[] a,
    int fromIndex, int toIndex, long key) {
        int low = fromIndex;
        int high = toIndex - 1;
        while (low <= high) {
            int mid = (low + high) >>> 1;
            long midVal = a[mid];
            if (midVal < key)
                low = mid + 1;
            else if (midVal > key)
                high = mid - 1;
            else
                return mid; // key found
        }
        return -(low + 1); // key not found.
```


- ▶ Path Complexity: $(6.86)(1.17)^n + (0.22)(1.1)^n + (0.13)(0.84)^n + 2$
- ► Asymptotic: Θ(1.17ⁿ)
- Complexity Class: Exponential

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
 - A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
 - A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.
- NPATH Complexity: the number of acyclic paths in the CFG.

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
 - A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.
- **NPATH Complexity:** the number of acyclic paths in the CFG.
- Limitation: Both cyclomatic and NPATH return constant numbers, regardless of loops.

- Cyclomatic complexity: the maximum number of linearly independent paths in the CFG.
 - A set of paths is linearly independent if and only if each path contains at least one edge that is not included in any other path.
- **NPATH Complexity:** the number of acyclic paths in the CFG.
- Limitation: Both cyclomatic and NPATH return constant numbers, regardless of loops.
- Comparison of cyclomatic, NPATH, and path complexities.

Method	Cyclomatic Complexity	NPATH Complexity	Path Complexity	Asymptotic Complexity
rangeCheck()	4	4	4	Θ(1)
reset()	3	4	$0.12n^2 + 1.25n + 3$	$\Theta(n^2)$
binarySearch0()	4	4	$\begin{array}{c} (6.86)1.17^n + (0.22)1.1^n \\ + (0.13)(0.84)^n + 2 \end{array}$	Θ(1.17 ⁿ)

Complexity Comparison

Pattern	Control Flow Graph	Cyclomatic Complexity	NPATH Complexity	Asymptotic Complexity
K If-Else in sequence		<i>K</i> + 1	2 ^{<i>K</i>}	2 ^{<i>K</i>}
K If-Else nested		<i>K</i> + 1	<i>K</i> + 1	K + 1
K Loops in sequence		<i>K</i> + 1	2 ^{<i>K</i>}	$\Theta(n^K)$
K Loops nested		<i>K</i> + 1	<i>K</i> + 1	$\Theta(b^n)$

Experiments

- ▶ Tested our analysis on Java 7 SDK (132K methods, \approx 2.5 hr.) and Apache Commons (44K methods, \approx 1 hr.) libraries.
- Separated methods into complexity classes:
 - C = 1 Unique path
 - C > 1 Constant number of paths
 - n^k Polynomial
 - bⁿ Exponential

Experiments

- ▶ Tested our analysis on Java 7 SDK (132K methods, \approx 2.5 hr.) and Apache Commons (44K methods, \approx 1 hr.) libraries.
- Separated methods into complexity classes:
 - ► C = 1 Unique path
 - C > 1 Constant number of paths
 - n^k Polynomial
 - bⁿ Exponential

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

vlab.cs.ucsb.edu/PAC/

Our tool is called PAth Complexity Analyzer (PAC).

- vlab.cs.ucsb.edu/PAC/
- ► Implemented using ASM Framework and MATHEMATICA.

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

- vlab.cs.ucsb.edu/PAC/
- ► Implemented using ASM Framework and MATHEMATICA.
 - Source code and experimental results are available.

Replication Package

Our tool is called PAth Complexity Analyzer (PAC).

- vlab.cs.ucsb.edu/PAC/
- ► Implemented using ASM Framework and MATHEMATICA.
 - Source code and experimental results are available.
- Web version.
 - 1. Upload Java .class or .jar file.
 - 2. Output a table of cyclomatic, NPATH, and (asymptotic) path complexities for all methods.

Future Work

- Experimentally validate that path complexity is a good measure of the difficulty of acheiving path coverage.
- Extend analysis to inter-procedural calls using the theory of generating functions for generative grammars.
- Path complexity may count infeasible paths-provides only an upper bound. Refine path complexity to consider simple path conditions.
- Apply path complexity results to side-channel analysis for timing attacks.

Thank you.